IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> StanfordNLP实战使用(Python) -> 正文阅读

[Python知识库]StanfordNLP实战使用(Python)

数据集与目的

任务目的

此任务目的为使用StanfordNLP工具对文本进行解析,得到文本分析结果,做后续研究

数据集

获取到新闻网站上8个国家相关新闻的html,抓取正文内容以及发表日期,并存入txt文件。

新闻内容样例:“本报伦敦3月20日电(记者邢雪)英国最大工会组织“工会联盟”近期发布报告称,英国社会男女收入不平等,女性员工工资平均比男性员工少15.4%。英国还需要30多年才能弥合这一差距。英国财政研究所此前发布的报告也显示,过去25年英国男女收入差距“几乎没有任何变化”。
据报道,在英国不同行业,男女收入差距的严重程度不一。在金融和保险领域,男女收入差距达到32.2%,相当于女性一年内少获得将近4个月的工资。即使是在教育、医疗护理等以女性为主的行业领域,女性收入仍旧普遍低于男性。
英国财政研究所研究部门副主任科斯塔·迪亚斯认为,英国在就业、工资、工作时间等方面,依然存在较大性别差距。英国政府的政策缺乏一套“连贯性”激励机制,以确保男女社会责任均等、实现职场性别平等。
”

数据分类

因为此任务得到的结果之后会进行一些后续研究,所以对新闻需要进行分类。

  1. 首先按照发布日期将新闻数据按周长度分类
  2. 利用层次聚类算法对每一周的新闻进行分类

层次聚类核心代码如下:

def cluster(article_list):
    num = len(article_list)
    Scores=[]
    labels=[]
    metric = np.zeros((num, num))
    for i in range(num):
        for j in range(i + 1, num):
            v1, v2 = get_word_vector(article_list[i], article_list[j], stop_word)
            val = cos_dist(v1, v2)
            metric[i, j] = 1 - val
            metric[j, i] = 1 - val
    n_clusters = min(11,num)

    for k in range(2, n_clusters):
        model = AgglomerativeClustering(n_clusters=k, affinity='precomputed', linkage='average')
        model.fit(metric)
        Scores.append(silhouette_score(metric, model.labels_, metric='euclidean'))#轮廓系数
        label = model.fit_predict(metric)
        labels.append(label)
    maxid=0
    for i in range(1,len(Scores)):
        if Scores[i]>Scores[maxid]:
            maxid=i
    return labels[maxid],maxid+2

stanfordnlp使用

具体使用安装使用教程大家可在别处找到,csdn上也有很多

在模型文件夹打开命令行中执行下述代码

java -mx6g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLP -props StanfordCoreNLP-chinese.properties -fileList ../filelist.txt -outputFormat json -outputDirectory ../output/England/

其中filelist里面的文件示例:
stanfordnlp会按行处理,一行是一条新闻文本。
在这里插入图片描述
结果json文件样例:(因为篇幅过长,放在最后)

共指消解

使用stanfordnlp分析结果,对原文本进行共指消解,代码如下:

def get_coref(file):
    with open(file,'r',encoding='UTF-8') as f:
        f=f.read()
        result=json.loads(f)
        sentence=result['sentences']
        corefs=result['corefs']

    return [sentence,corefs]

def deal_origin(file,res):
    text=""
    for i in res[1].values():
        sentenceList=i
        origin_sentenceid=sentenceList[0]['sentNum']-1
        origin_startIndex=sentenceList[0]['startIndex']-1
        origin_endIndex=sentenceList[0]['endIndex']-1
        origin_word=""
        for j in range(origin_startIndex,origin_endIndex):
            origin_word+=res[0][origin_sentenceid]['tokens'][j]["originalText"]
        for j in sentenceList[1::]:
            tgt_sentenceid=j['sentNum']-1
            tgt_startIndex = j['startIndex'] - 1
            tgt_endIndex = j['endIndex'] - 1
            for k in range(tgt_startIndex, tgt_endIndex):
                if k==tgt_startIndex:
                    res[0][tgt_sentenceid]['tokens'][k]["originalText"]=origin_word
                else:
                    res[0][tgt_sentenceid]['tokens'][k]["originalText"] = ""
    for i in res[0]:
        for j in i['tokens']:
            text+=j["originalText"]

    with open(file, 'w', encoding='UTF-8') as f:
        f.write(text)

执行完此代码会得到新的原文本,再使用stanfordnlp处理一次,这次是新的filelist,不要忘记重新生成filelist了。

java -mx6g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLP -props StanfordCoreNLP-chinese.properties -fileList ../filelist.txt -outputFormat json -outputDirectory ../output/England/

这样就得到了stanfordnlp处理文本后的结果,可以根据自己的需要修改命令行的代码,代码format指导在stanfordnlp官网就能看到

遇到问题

  • 在学习过程中,发现使用stanfordnlp的python库会触发错误,试过了一些解决办法,以及版本更换,仍存在问题。同时从stanfordnlp官网了解到,他们已经开发出了名叫Stanza的python版nlp库。综上原因,尝试使用Stanza进行处理。
  • Stanza没有开发共指解析模块,但是通过stanza可以访问stanfordnlp的接口,通过学习,调用了共指解析的接口,并实现文本转换。
  • 命令行调用stanfordnlp也很方便,可以考虑使用这种方法,本文也是如此。

output.json

{
  "docId": "2020-04-15_all_3.txt",
  "sentences": [
    {
      "index": 0,
      "parse": "(ROOT\r\n  (IP\r\n    (VP\r\n      (VCD (VV 延伸) (VV 阅读))\r\n      (PU :)\r\n      (IP\r\n        (NP\r\n          (NP\r\n            (NP (NN 全球) (NN 疫情) (NN 要览))\r\n            (PRN (PU ()\r\n              (NP (NT 4月) (NT 16日))\r\n              (PU ))))\r\n          (NP\r\n            (NP (NR 亚欧))\r\n            (NP (NN 地区)))\r\n          (NP (NN 疫情)))\r\n        (VP (VV 持续)\r\n          (VP\r\n            (VP (VV 蔓延)\r\n              (NP\r\n                (NP (NR 德国))\r\n                (NP (NN 社交) (NN 限制) (NN 措施))))\r\n            (VP (VV 延长))))))))",
      "basicDependencies": [
        {
          "dep": "ROOT",
          "governor": 0,
          "governorGloss": "ROOT",
          "dependent": 1,
          "dependentGloss": "延伸"
        },
        {
          "dep": "compound:vc",
          "governor": 1,
          "governorGloss": "延伸",
          "dependent": 2,
          "dependentGloss": "阅读"
        },
        {
          "dep": "punct",
          "governor": 1,
          "governorGloss": "延伸",
          "dependent": 3,
          "dependentGloss": ":"
        },
        {
          "dep": "compound:nn",
          "governor": 6,
          "governorGloss": "要览",
          "dependent": 4,
          "dependentGloss": "全球"
        },
        {
          "dep": "compound:nn",
          "governor": 6,
          "governorGloss": "要览",
          "dependent": 5,
          "dependentGloss": "疫情"
        },
        {
          "dep": "compound:nn",
          "governor": 13,
          "governorGloss": "疫情",
          "dependent": 6,
          "dependentGloss": "要览"
        },
        {
          "dep": "punct",
          "governor": 9,
          "governorGloss": "16日",
          "dependent": 7,
          "dependentGloss": "("
        },
        {
          "dep": "compound:nn",
          "governor": 9,
          "governorGloss": "16日",
          "dependent": 8,
          "dependentGloss": "4月"
        },
        {
          "dep": "parataxis:prnmod",
          "governor": 6,
          "governorGloss": "要览",
          "dependent": 9,
          "dependentGloss": "16日"
        },
        {
          "dep": "punct",
          "governor": 9,
          "governorGloss": "16日",
          "dependent": 10,
          "dependentGloss": ")"
        },
        {
          "dep": "nmod:assmod",
          "governor": 12,
          "governorGloss": "地区",
          "dependent": 11,
          "dependentGloss": "亚欧"
        },
        {
          "dep": "compound:nn",
          "governor": 13,
          "governorGloss": "疫情",
          "dependent": 12,
          "dependentGloss": "地区"
        },
        {
          "dep": "nsubj",
          "governor": 15,
          "governorGloss": "蔓延",
          "dependent": 13,
          "dependentGloss": "疫情"
        },
        {
          "dep": "xcomp",
          "governor": 15,
          "governorGloss": "蔓延",
          "dependent": 14,
          "dependentGloss": "持续"
        },
        {
          "dep": "ccomp",
          "governor": 1,
          "governorGloss": "延伸",
          "dependent": 15,
          "dependentGloss": "蔓延"
        },
        {
          "dep": "nmod:assmod",
          "governor": 19,
          "governorGloss": "措施",
          "dependent": 16,
          "dependentGloss": "德国"
        },
        {
          "dep": "compound:nn",
          "governor": 19,
          "governorGloss": "措施",
          "dependent": 17,
          "dependentGloss": "社交"
        },
        {
          "dep": "compound:nn",
          "governor": 19,
          "governorGloss": "措施",
          "dependent": 18,
          "dependentGloss": "限制"
        },
        {
          "dep": "dobj",
          "governor": 15,
          "governorGloss": "蔓延",
          "dependent": 19,
          "dependentGloss": "措施"
        },
        {
          "dep": "conj",
          "governor": 15,
          "governorGloss": "蔓延",
          "dependent": 20,
          "dependentGloss": "延长"
        }
      ],
      "enhancedDependencies": [
        {
          "dep": "ROOT",
          "governor": 0,
          "governorGloss": "ROOT",
          "dependent": 1,
          "dependentGloss": "延伸"
        },
        {
          "dep": "compound:vc",
          "governor": 1,
          "governorGloss": "延伸",
          "dependent": 2,
          "dependentGloss": "阅读"
        },
        {
          "dep": "punct",
          "governor": 1,
          "governorGloss": "延伸",
          "dependent": 3,
          "dependentGloss": ":"
        },
        {
          "dep": "compound:nn",
          "governor": 6,
          "governorGloss": "要览",
          "dependent": 4,
          "dependentGloss": "全球"
        },
        {
          "dep": "compound:nn",
          "governor": 6,
          "governorGloss": "要览",
          "dependent": 5,
          "dependentGloss": "疫情"
        },
        {
          "dep": "compound:nn",
          "governor": 13,
          "governorGloss": "疫情",
          "dependent": 6,
          "dependentGloss": "要览"
        },
        {
          "dep": "punct",
          "governor": 9,
          "governorGloss": "16日",
          "dependent": 7,
          "dependentGloss": "("
        },
        {
          "dep": "compound:nn",
          "governor": 9,
          "governorGloss": "16日",
          "dependent": 8,
          "dependentGloss": "4月"
        },
        {
          "dep": "parataxis:prnmod",
          "governor": 6,
          "governorGloss": "要览",
          "dependent": 9,
          "dependentGloss": "16日"
        },
        {
          "dep": "punct",
          "governor": 9,
          "governorGloss": "16日",
          "dependent": 10,
          "dependentGloss": ")"
        },
        {
          "dep": "nmod:assmod",
          "governor": 12,
          "governorGloss": "地区",
          "dependent": 11,
          "dependentGloss": "亚欧"
        },
        {
          "dep": "compound:nn",
          "governor": 13,
          "governorGloss": "疫情",
          "dependent": 12,
          "dependentGloss": "地区"
        },
        {
          "dep": "nsubj",
          "governor": 15,
          "governorGloss": "蔓延",
          "dependent": 13,
          "dependentGloss": "疫情"
        },
        {
          "dep": "xcomp",
          "governor": 15,
          "governorGloss": "蔓延",
          "dependent": 14,
          "dependentGloss": "持续"
        },
        {
          "dep": "ccomp",
          "governor": 1,
          "governorGloss": "延伸",
          "dependent": 15,
          "dependentGloss": "蔓延"
        },
        {
          "dep": "nmod:assmod",
          "governor": 19,
          "governorGloss": "措施",
          "dependent": 16,
          "dependentGloss": "德国"
        },
        {
          "dep": "compound:nn",
          "governor": 19,
          "governorGloss": "措施",
          "dependent": 17,
          "dependentGloss": "社交"
        },
        {
          "dep": "compound:nn",
          "governor": 19,
          "governorGloss": "措施",
          "dependent": 18,
          "dependentGloss": "限制"
        },
        {
          "dep": "dobj",
          "governor": 15,
          "governorGloss": "蔓延",
          "dependent": 19,
          "dependentGloss": "措施"
        },
        {
          "dep": "conj",
          "governor": 15,
          "governorGloss": "蔓延",
          "dependent": 20,
          "dependentGloss": "延长"
        }
      ],
      "enhancedPlusPlusDependencies": [
        {
          "dep": "ROOT",
          "governor": 0,
          "governorGloss": "ROOT",
          "dependent": 1,
          "dependentGloss": "延伸"
        },
        {
          "dep": "compound:vc",
          "governor": 1,
          "governorGloss": "延伸",
          "dependent": 2,
          "dependentGloss": "阅读"
        },
        {
          "dep": "punct",
          "governor": 1,
          "governorGloss": "延伸",
          "dependent": 3,
          "dependentGloss": ":"
        },
        {
          "dep": "compound:nn",
          "governor": 6,
          "governorGloss": "要览",
          "dependent": 4,
          "dependentGloss": "全球"
        },
        {
          "dep": "compound:nn",
          "governor": 6,
          "governorGloss": "要览",
          "dependent": 5,
          "dependentGloss": "疫情"
        },
        {
          "dep": "compound:nn",
          "governor": 13,
          "governorGloss": "疫情",
          "dependent": 6,
          "dependentGloss": "要览"
        },
        {
          "dep": "punct",
          "governor": 9,
          "governorGloss": "16日",
          "dependent": 7,
          "dependentGloss": "("
        },
        {
          "dep": "compound:nn",
          "governor": 9,
          "governorGloss": "16日",
          "dependent": 8,
          "dependentGloss": "4月"
        },
        {
          "dep": "parataxis:prnmod",
          "governor": 6,
          "governorGloss": "要览",
          "dependent": 9,
          "dependentGloss": "16日"
        },
        {
          "dep": "punct",
          "governor": 9,
          "governorGloss": "16日",
          "dependent": 10,
          "dependentGloss": ")"
        },
        {
          "dep": "nmod:assmod",
          "governor": 12,
          "governorGloss": "地区",
          "dependent": 11,
          "dependentGloss": "亚欧"
        },
        {
          "dep": "compound:nn",
          "governor": 13,
          "governorGloss": "疫情",
          "dependent": 12,
          "dependentGloss": "地区"
        },
        {
          "dep": "nsubj",
          "governor": 15,
          "governorGloss": "蔓延",
          "dependent": 13,
          "dependentGloss": "疫情"
        },
        {
          "dep": "xcomp",
          "governor": 15,
          "governorGloss": "蔓延",
          "dependent": 14,
          "dependentGloss": "持续"
        },
        {
          "dep": "ccomp",
          "governor": 1,
          "governorGloss": "延伸",
          "dependent": 15,
          "dependentGloss": "蔓延"
        },
        {
          "dep": "nmod:assmod",
          "governor": 19,
          "governorGloss": "措施",
          "dependent": 16,
          "dependentGloss": "德国"
        },
        {
          "dep": "compound:nn",
          "governor": 19,
          "governorGloss": "措施",
          "dependent": 17,
          "dependentGloss": "社交"
        },
        {
          "dep": "compound:nn",
          "governor": 19,
          "governorGloss": "措施",
          "dependent": 18,
          "dependentGloss": "限制"
        },
        {
          "dep": "dobj",
          "governor": 15,
          "governorGloss": "蔓延",
          "dependent": 19,
          "dependentGloss": "措施"
        },
        {
          "dep": "conj",
          "governor": 15,
          "governorGloss": "蔓延",
          "dependent": 20,
          "dependentGloss": "延长"
        }
      ],
      "entitymentions": [
        {
          "docTokenBegin": 7,
          "docTokenEnd": 9,
          "tokenBegin": 7,
          "tokenEnd": 9,
          "text": "4月16日",
          "characterOffsetBegin": 14,
          "characterOffsetEnd": 19,
          "ner": "DATE",
          "normalizedNER": "XXXX-04-16",
          "nerConfidences": {
            "DATE": -1
          }
        },
        {
          "docTokenBegin": 10,
          "docTokenEnd": 11,
          "tokenBegin": 10,
          "tokenEnd": 11,
          "text": "亚欧",
          "characterOffsetBegin": 20,
          "characterOffsetEnd": 22,
          "ner": "LOCATION",
          "nerConfidences": {
            "LOCATION": 0.48412511863581
          }
        },
        {
          "docTokenBegin": 15,
          "docTokenEnd": 16,
          "tokenBegin": 15,
          "tokenEnd": 16,
          "text": "德国",
          "characterOffsetBegin": 30,
          "characterOffsetEnd": 32,
          "ner": "COUNTRY",
          "nerConfidences": {
            "GPE": 0.9540884277315
          }
        }
      ],
      "tokens": [
        {
          "index": 1,
          "word": "延伸",
          "originalText": "延伸",
          "lemma": "延伸",
          "characterOffsetBegin": 0,
          "characterOffsetEnd": 2,
          "pos": "VV",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 2,
          "word": "阅读",
          "originalText": "阅读",
          "lemma": "阅读",
          "characterOffsetBegin": 2,
          "characterOffsetEnd": 4,
          "pos": "VV",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 3,
          "word": ":",
          "originalText": ":",
          "lemma": ":",
          "characterOffsetBegin": 4,
          "characterOffsetEnd": 5,
          "pos": "PU",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 4,
          "word": "全球",
          "originalText": "全球",
          "lemma": "全球",
          "characterOffsetBegin": 7,
          "characterOffsetEnd": 9,
          "pos": "NN",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 5,
          "word": "疫情",
          "originalText": "疫情",
          "lemma": "疫情",
          "characterOffsetBegin": 9,
          "characterOffsetEnd": 11,
          "pos": "NN",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 6,
          "word": "要览",
          "originalText": "要览",
          "lemma": "要览",
          "characterOffsetBegin": 11,
          "characterOffsetEnd": 13,
          "pos": "NN",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 7,
          "word": "(",
          "originalText": "(",
          "lemma": "(",
          "characterOffsetBegin": 13,
          "characterOffsetEnd": 14,
          "pos": "PU",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 8,
          "word": "4月",
          "originalText": "4月",
          "lemma": "4月",
          "characterOffsetBegin": 14,
          "characterOffsetEnd": 16,
          "pos": "NT",
          "ner": "DATE",
          "normalizedNER": "XXXX-04-16",
          "speaker": "PER0"
        },
        {
          "index": 9,
          "word": "16日",
          "originalText": "16日",
          "lemma": "16日",
          "characterOffsetBegin": 16,
          "characterOffsetEnd": 19,
          "pos": "NT",
          "ner": "DATE",
          "normalizedNER": "XXXX-04-16",
          "speaker": "PER0"
        },
        {
          "index": 10,
          "word": ")",
          "originalText": ")",
          "lemma": ")",
          "characterOffsetBegin": 19,
          "characterOffsetEnd": 20,
          "pos": "PU",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 11,
          "word": "亚欧",
          "originalText": "亚欧",
          "lemma": "亚欧",
          "characterOffsetBegin": 20,
          "characterOffsetEnd": 22,
          "pos": "NR",
          "ner": "LOCATION",
          "speaker": "PER0"
        },
        {
          "index": 12,
          "word": "地区",
          "originalText": "地区",
          "lemma": "地区",
          "characterOffsetBegin": 22,
          "characterOffsetEnd": 24,
          "pos": "NN",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 13,
          "word": "疫情",
          "originalText": "疫情",
          "lemma": "疫情",
          "characterOffsetBegin": 24,
          "characterOffsetEnd": 26,
          "pos": "NN",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 14,
          "word": "持续",
          "originalText": "持续",
          "lemma": "持续",
          "characterOffsetBegin": 26,
          "characterOffsetEnd": 28,
          "pos": "VV",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 15,
          "word": "蔓延",
          "originalText": "蔓延",
          "lemma": "蔓延",
          "characterOffsetBegin": 28,
          "characterOffsetEnd": 30,
          "pos": "VV",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 16,
          "word": "德国",
          "originalText": "德国",
          "lemma": "德国",
          "characterOffsetBegin": 30,
          "characterOffsetEnd": 32,
          "pos": "NR",
          "ner": "COUNTRY",
          "speaker": "PER0"
        },
        {
          "index": 17,
          "word": "社交",
          "originalText": "社交",
          "lemma": "社交",
          "characterOffsetBegin": 32,
          "characterOffsetEnd": 34,
          "pos": "NN",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 18,
          "word": "限制",
          "originalText": "限制",
          "lemma": "限制",
          "characterOffsetBegin": 34,
          "characterOffsetEnd": 36,
          "pos": "NN",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 19,
          "word": "措施",
          "originalText": "措施",
          "lemma": "措施",
          "characterOffsetBegin": 36,
          "characterOffsetEnd": 38,
          "pos": "NN",
          "ner": "O",
          "speaker": "PER0"
        },
        {
          "index": 20,
          "word": "延长",
          "originalText": "延长",
          "lemma": "延长",
          "characterOffsetBegin": 38,
          "characterOffsetEnd": 40,
          "pos": "VV",
          "ner": "O",
          "speaker": "PER0"
        }
      ]
    }
  ],
  "corefs": {
  }
}

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2022-09-21 00:24:34  更:2022-09-21 00:25:55 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/15 10:46:45-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码