IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> 安装GPU版本tensorflow、pytorch -> 正文阅读

[Python知识库]安装GPU版本tensorflow、pytorch

好久没有写纯原创博客了,最近这几天超级超级忙,主要是周一到周四的早八到晚九的满课生活、沉淀了之前学过的知识和高强度的CSGO训练。

与我本人懒没有任何关系

学校AI社团刚刚建立,纳新结束,百废待兴。我认为我这个时候写一篇不错的配置环境的文章,一定可以帮助初学者节省很多时间。

一、基础知识

  • 我们平时直接pip install pytorch/tensorflow==版本号 - i 源,默认下载的都是CPU版本的,训练数据时可以看到你的CPU占用很高,GPU动都不动。
  • python的版本不同,允许你下载的pytorch/tensorflow版本也许会有一些小小的不同。
  • 下载GPU版本的pytorch/tensorflow,需要下载CUDA和cuDNN,三者不需要担心下载顺序,可以不用知道CUDA和cuDNN是干什么的,跟着下载步骤安装完就好。
  • 我们下载的pytorch/tensorflow、CUDA、cuDNN 都要严格按照版本来下载,以免出错。
  • 有个东西叫环境变量,很多初学者学一门语言时跟着教程点点,就把环境变量配了,那些教程里也没说是干什么的,这里建议看下我的这篇文章:?python与anaconda区别及先后安装的问题,当然不明白也没什么问题。
  • 这里看到的是支持的cuda的最高版本,应该下载这以下的:

?

我本人显卡是3070,下载了11.0的cuda和8.0的cuDNN----2.4 的 tensorflow 和 1.71的torch:

  • 30系显卡使用11版本以下的cuda会出现程序运行很慢的问题,不大兼容,以下显卡忽略这条。
  • 很难找到一个合适的cuda版本,同时兼容自己满意的tensorflow和pytorch版本,虽然cuda可以下载多个版本懂哥可以配合版本随便用,但对于初学者来说工作量太大了。
  • 我下载11.0的cuda,刚好满足了一个cuda兼容不太老也不太新版本的tensorflow,且以后用到的YOLOv5的torch>=1.70的要求。
  • 当你成为懂哥后,你就能下载多个cuda、开多个虚拟环境配置不同版本的深度学习框架了。

?

二、下载安装pytorch/tensorflow

记得把你之前下载的CPU版本的卸载了,先把conda退了再卸载好点,报错了自己找文件位置删除。

  • pip uninstall temsorflow
  • pip uninstall pytorch

?

pytorch:

我们不理会最新版本,点开历史版本,我们就能看到各种各样pytorch:

这是tensorflow的:

GPU支持CUDA列表:https://www.tensorflow.org/install/source_windows?hl=zh-cn

这张图哪都有,因为来自官网,现在是2022-09-20,tensorflow版本都到2.9了,但这张图还没更新,也别自做主张下载这之外的版本了,选一个图里面有的,看好cuda版本,和pytorch对比一下,下载吧:

以我本人为例:

?

你要做的步骤就是

1、看tensorflow,选个版本,看下需要的cuda版本,然后点开pytorch页面ctrl+f输入cuda版本,找自己满意的pytorch版本,切记是pip install的,在conda install下面,conda install下载太慢了。

比如我选的:

  • pip install tensorflow_gpu==2.4.0 -i https://pypi.doubanio.com/simple
  • pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

2、下载cuda链接CUDA Toolkit Archive | NVIDIA Developer比如我选择11.0版本,那11.0.1或者11.0.2也行。下载完成后,安装路径什么的也不用管,就点击下一步就行。下载完成后,你的C:\Program Files\ 里就多了个 NVIDIA GPU Computing Toolkit 文件夹了

?

3、下载上面tensorflow那里截图中,你选择的cuda对应的的版本的cuDNN

比如我下载11.0.1的cuda,那就配8.0的cuDNN。

第一次进这个网站好像要登录注册一下,无伤大雅~??

?

?

4、下载完成后,解压,把里面那一堆文件粘贴到:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0? 这里面,然后你下载来的cuDNN文件就删掉吧没用了。

完成之后是这样的:

?

5、配置环境变量意思一下:

?

这样就能用了,或许需要重启下电脑,但我没有。

你会发现,这比CPU快多了!

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2022-09-21 00:24:34  更:2022-09-21 00:26:32 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/26 13:40:02-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计