IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> NNDL 作业3:分别使用numpy和pytorch实现FNN例题 -> 正文阅读

[Python知识库]NNDL 作业3:分别使用numpy和pytorch实现FNN例题

不知道为啥这次没目录,勉强看吧。

分别使用numpy和pytorch实现FNN例题

1.过程推导 - 了解BP原理
2.数值计算 - 手动计算,掌握细节
3.代码实现 - numpy手推 + pytorch自动

代码实现:
在这里插入图片描述
需要解决的问题:

1.对比【numpy】和【pytorch】程序,总结并陈述。
2.激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。
3.激活函数Sigmoid改变为Relu,观察、总结并陈述。
4.损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。
5.损失函数MSE改变为交叉熵,观察、总结并陈述。
6.改变步长,训练次数,观察、总结并陈述。
7.权值w1-w8初始值换为随机数,对比“指定权值”的结果,观察、总结并陈述。
8.权值w1-w8初始值换为0,观察、总结并陈述。
9.全面总结反向传播原理和编码实现,认真写心得体会。

过程推导 - 了解BP原理

在这里插入图片描述
在这里插入图片描述

数值计算 - 手动计算,掌握细节

在这里插入图片描述

代码实现

对比【numpy】和【pytorch】程序,总结并陈述。

numpy


import numpy as np

w1, w2, w3, w4, w5, w6, w7, w8 = 0.2, -0.4, 0.5, 0.6, 0.1, -0.5, -0.3, 0.8
x1, x2 = 0.5, 0.3
y1, y2 = 0.23, -0.07
print("输入值 x0, x1:", x1, x2)
print("输出值 y0, y1:", y1, y2)


def sigmoid(z):
    a = 1 / (1 + np.exp(-z))
    return a


def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)

    print("正向计算,隐藏层h1 ,h2:", end="")
    print(round(out_h1, 5), round(out_h2, 5))
    print("正向计算,预测值o1 ,o2:", end="")
    print(round(out_o1, 5), round(out_o2, 5))

    error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2

    print("损失函数(均方误差):",round(error, 5))

    return out_o1, out_o2, out_h1, out_h2


def back_propagate(out_o1, out_o2, out_h1, out_h2):
    # 反向传播
    d_o1 = out_o1 - y1
    d_o2 = out_o2 - y2

    d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
    d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
    d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
    d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2

    d_w1 = (d_o1 * out_h1 * (1 - out_h1) * w5 + d_o2 * out_o2 * (1 - out_o2) * w6) * out_h1 * (1 - out_h1) * x1
    d_w3 = (d_o1 * out_h1 * (1 - out_h1) * w5 + d_o2 * out_o2 * (1 - out_o2) * w6) * out_h1 * (1 - out_h1) * x2
    d_w2 = (d_o1 * out_h1 * (1 - out_h1) * w7 + d_o2 * out_o2 * (1 - out_o2) * w8) * out_h2 * (1 - out_h2) * x1
    d_w4 = (d_o1 * out_h1 * (1 - out_h1) * w7 + d_o2 * out_o2 * (1 - out_o2) * w8) * out_h2 * (1 - out_h2) * x2

    print("w的梯度:",round(d_w1, 2), round(d_w2, 2), round(d_w3, 2), round(d_w4, 2), round(d_w5, 2), round(d_w6, 2),
          round(d_w7, 2), round(d_w8, 2))

    return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8


def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
    # 步长
    step = 1
    w1 = w1 - step * d_w1
    w2 = w2 - step * d_w2
    w3 = w3 - step * d_w3
    w4 = w4 - step * d_w4
    w5 = w5 - step * d_w5
    w6 = w6 - step * d_w6
    w7 = w7 - step * d_w7
    w8 = w8 - step * d_w8
    return w1, w2, w3, w4, w5, w6, w7, w8


if __name__ == "__main__":

    print("权值w0-w7:",round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
          round(w8, 2))


    for i in range(5):
        print("=====第" + str(i+1) + "轮=====")
        out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)
        d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)
        w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)

    print("更新后的权值w:",round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
          round(w8, 2))

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

pytorch


import torch

x = [0.5, 0.3]  # x0, x1 = 0.5, 0.3
y = [0.23, -0.07]  # y0, y1 = 0.23, -0.07
print("输入值 x0, x1:", x[0], x[1])
print("输出值 y0, y1:", y[0], y[1])
w = [torch.Tensor([0.2]), torch.Tensor([-0.4]), torch.Tensor([0.5]), torch.Tensor(
    [0.6]), torch.Tensor([0.1]), torch.Tensor([-0.5]), torch.Tensor([-0.3]), torch.Tensor([0.8])]  # 权重初始值
for i in range(0, 8):
    w[i].requires_grad = True
print("权值w0-w7:")
for i in range(0, 8):
    print(w[i].data, end="  ")


def forward_propagate(x):  # 计算图
    in_h1 = w[0] * x[0] + w[2] * x[1]
    out_h1 = torch.sigmoid(in_h1)
    in_h2 = w[1] * x[0] + w[3] * x[1]
    out_h2 = torch.sigmoid(in_h2)

    in_o1 = w[4] * out_h1 + w[6] * out_h2
    out_o1 = torch.sigmoid(in_o1)
    in_o2 = w[5] * out_h1 + w[7] * out_h2
    out_o2 = torch.sigmoid(in_o2)

    print("正向计算,隐藏层h1 ,h2:", end="")
    print(out_h1.data, out_h2.data)
    print("正向计算,预测值o1 ,o2:", end="")
    print(out_o1.data, out_o2.data)

    return out_o1, out_o2


def loss(x, y):  # 损失函数
    y_pre = forward_propagate(x)  # 前向传播
    loss_mse = (1 / 2) * (y_pre[0] - y[0]) ** 2 + (1 / 2) * (y_pre[1] - y[1]) ** 2  # 考虑 : t.nn.MSELoss()
    print("损失函数(均方误差):", loss_mse.item())
    return loss_mse


if __name__ == "__main__":
    for k in range(1):
        print("\n=====第" + str(k+1) + "轮=====")
        l = loss(x, y)  # 前向传播,求 Loss,构建计算图
        l.backward()  # 反向传播,求出计算图中所有梯度存入w中. 自动求梯度,不需要人工编程实现。
        print("w的梯度: ", end="  ")
        for i in range(0, 8):
            print(round(w[i].grad.item(), 2), end="  ")  # 查看梯度
        step = 1  # 步长
        for i in range(0, 8):
            w[i].data = w[i].data - step * w[i].grad.data  # 更新权值
            w[i].grad.data.zero_()  # 注意:将w中所有梯度清零
        print("\n更新后的权值w:")
        for i in range(0, 8):
            print(w[i].data, end="  ")


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。

从上面代码运行结果中可以看出当训练的轮数少的时候使用Sigmoid函数和使用Pytorch自带函数torch.sigmoid()并没有什么较明显的差距,当轮数多的时候,可以看出torch.sigmoid()的精度高一些。

3.激活函数Sigmoid改变为Relu,观察、总结并陈述。

Relu
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Relu是一个非常优秀的激活哈数,相比较于传统的Sigmoid函数,有三个作用:

  1. 防止梯度弥散
  2. 稀疏激活性
  3. 加快计算
    损失函数(均方误差)下降的更快,在训练第五轮时就降到比较低的程度,所以说ReLU函数的收敛速度比Sigmoid函数更快。

ReLU函数可以使一部分神经元的输出为0,就造成了网络的稀疏性,即稀疏激活性,并且减少了参数之间的相互依存关系,防止梯度弥散。

4.损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。

在这里插入图片描述
网上的解决方法


def loss_fuction(x1, x2, y1, y2):
    y1_pred, y2_pred = forward_propagate(x1, x2)
    t = torch.nn.MSELoss()
    loss = t(y1_pred,y1) + t(y2_pred,y2)
    print("损失函数(均方误差):", loss.item())
    return loss


在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
由上图可以看出,50轮是一样,但是最终收敛结果不一样,手写的要比torch.nn.MSELoss()收敛的结果好些。

5.损失函数MSE改变为交叉熵,观察、总结并陈述。

修改函数:

def loss_fuction(x1, x2, y1, y2):
    y1_pred, y2_pred = forward_propagate(x1, x2)
    loss_func = torch.nn.CrossEntropyLoss() # 创建交叉熵损失函数
    y_pred = torch.stack([y1_pred, y2_pred], dim=1)
    y = torch.stack([y1, y2], dim=1)
    loss = loss_func(y_pred, y) # 计算
    print("损失函数(交叉熵损失):", loss.item())
    return loss

在这里插入图片描述
在这里插入图片描述
当训练轮数为500时,损失函数已经变为负的了。

MSE 损失主要适用与回归问题,因为优化 MSE 等价于对高斯分布模型做极大似然估计,而简单回归中做服从高斯分布的假设是比较合理的
交叉熵损失主要适用于多分类问题,因为优化交叉熵损失等价于对多项式分布模型做极大似然估计,而多分类问题通常服从多项式分布

import matplotlib.pyplot as plt
import torch

x1, x2 = torch.Tensor([0.5]), torch.Tensor([0.3])
y1, y2 = torch.Tensor([0.23]), torch.Tensor([-0.07])
print("=====输入值:x1, x2;真实输出值:y1, y2=====")
print(x1, x2, y1, y2)
w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0.2]), torch.Tensor([-0.4]), torch.Tensor([0.5]), torch.Tensor(
    [0.6]), torch.Tensor([0.1]), torch.Tensor([-0.5]), torch.Tensor([-0.3]), torch.Tensor([0.8])  # 权重初始值
w1.requires_grad = True
w2.requires_grad = True
w3.requires_grad = True
w4.requires_grad = True
w5.requires_grad = True
w6.requires_grad = True
w7.requires_grad = True
w8.requires_grad = True


def sigmoid(z):
    a = 1 / (1 + torch.exp(-z))
    return a


def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)  # out_h1 = torch.sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)  # out_h2 = torch.sigmoid(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)  # out_o1 = torch.sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)  # out_o2 = torch.sigmoid(in_o2)

    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)

    return out_o1, out_o2


def loss_fuction(x1, x2, y1, y2):  # 损失函数
    y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
    loss = (1 / 2) * (y1_pred - y1) ** 2 + (1 / 2) * (y2_pred - y2) ** 2  # 考虑 : t.nn.MSELoss()
    print("损失函数(均方误差):", loss.item())
    return loss


def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
    # 步长
    step = 1
    w1.data = w1.data - step * w1.grad.data
    w2.data = w2.data - step * w2.grad.data
    w3.data = w3.data - step * w3.grad.data
    w4.data = w4.data - step * w4.grad.data
    w5.data = w5.data - step * w5.grad.data
    w6.data = w6.data - step * w6.grad.data
    w7.data = w7.data - step * w7.grad.data
    w8.data = w8.data - step * w8.grad.data
    w1.grad.data.zero_()  # 注意:将w中所有梯度清零
    w2.grad.data.zero_()
    w3.grad.data.zero_()
    w4.grad.data.zero_()
    w5.grad.data.zero_()
    w6.grad.data.zero_()
    w7.grad.data.zero_()
    w8.grad.data.zero_()
    return w1, w2, w3, w4, w5, w6, w7, w8


if __name__ == "__main__":

    print("=====更新前的权值=====")
    print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)
    Y = []
    X = []

    for i in range(50):
        print("=====第" + str(i) + "轮=====")
        L = loss_fuction(x1, x2, y1, y2)  # 前向传播,求 Loss,构建计算图
        L.backward()  # 自动求梯度,不需要人工编程实现。反向传播,求出计算图中所有梯度存入w中
        print("\tgrad W: ", round(w1.grad.item(), 2), round(w2.grad.item(), 2), round(w3.grad.item(), 2),
              round(w4.grad.item(), 2), round(w5.grad.item(), 2), round(w6.grad.item(), 2), round(w7.grad.item(), 2),
              round(w8.grad.item(), 2))
        w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)
        Y.append(L.item())
        X.append(i)

    plt.rcParams['font.sans-serif'] = ['SimHei']  # 可以plt绘图过程中中文无法显示的问题
    plt.plot(X, Y)
    plt.xlabel('迭代次数')
    plt.ylabel('Loss,step=1')
    plt.show()
    print("更新后的权值")
    print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)

step=1
在这里插入图片描述
在这里插入图片描述

step=3

在这里插入图片描述
在这里插入图片描述

step=0.1
在这里插入图片描述
在这里插入图片描述

7.权值w1-w8初始值换为随机数,对比“指定权值”的结果,观察、总结并陈述。

?w1, w2, w3, w4, w5, w6, w7, w8 = torch.randn(1), torch.randn(1), torch.randn(1), torch.randn(1), \
    torch.randn(1), torch.randn(1), torch.randn(1), torch.randn(1)

在这里插入图片描述
改变随机数值,改变了权值,但对收敛速度基本没有影响。

8.权值w1-w8初始值换为0,观察、总结并陈述。

在这里插入图片描述
在这里插入图片描述
可以观察到,在前50轮Loss变大,即收敛速度慢,后收敛结果不变。

9.全面总结反向传播原理和编码实现,认真写心得体会。

反向传播算法的原理是利用链式求导法则计算实际输出结果与理想结果之间的损失函数对每个权重参数或偏置项的偏导数,然后根据优化算法逐层反向地更新权重或偏置项,它采用了前向-后向传播的训练方式,通过不断调整模型中的参数,使损失函数达到收敛,从而构建准确的模型结构。

   反向传播算法可分为三个步骤:

  (1)前向传播。将样本数据输入至网络,数据从输入层经过逐层计算传送到输出层,得到相应的实际输出结果。

  (2)反向计算第L层神经元i的误差项,它表示网络的损失函数E对神经元的输出值的偏导数。

  (3)根据优化算法计算每个神经元参数的梯度,并更新每个参数。

通过对反向传播BP公式的手动求导,对他的转变过程认识更加深刻一些,以及对反向传播的各个步骤,代码实现,都有加强。

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2022-10-08 20:37:01  更:2022-10-08 20:37:34 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/16 1:20:08-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码