| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> Python知识库 -> Python 3.14 会比 C++ 更快! -> 正文阅读 |
|
[Python知识库]Python 3.14 会比 C++ 更快! |
对最新的、令人印象深刻的 Python 3.11 的基准测试知乎@春阳CYang Python是数据科学(DS)和机器学习(ML)中最常用的脚本语言之一。根据PopularitY of Programming Languages,Python 是谷歌搜索最多的语言。除了它是一种将各种 DS/ML 解决方案整合在一起的优秀胶水语言之外,它还有许多其他的库可以对数据做各种各样的事情。 大约在一个月前,我们得到了新的 Python 年度发行版 - 3.11版。我对这个新版本感到非常兴奋,因为这个版本的主要特点是速度显著提高。 在各种社交媒体上,我们已经看到很多人测试新版本的帖子,他们的测试结果令人震惊。但了解 Python3.11 真正有多快的最好方法是自己运行测试。 在这篇文章中,我将分享我对 Python3.11 的逐步分析。所有代码都可以在 我的 github 上找到。 对编程语言进行基准测试一点也不简单。当你觉得 x 比 y 快时,你应该对结果持怀疑态度。算法的一个实现可能比 x 好,而另一个实现比 y 好。对于我们的基准测试来说,我们尽可能的希望它能简单一些,因为我们正在用 Python 测试 Python,但我们可能已经从语言中选择了一些影响不大的元素。考虑到这一点,我想介绍我用于基准测试的算法:基因组组装算法 DNA K-mers。 基因组组装算法 DNA K-mers。这个算法的思想很简单,DNA 是一个长串序列,称为核苷酸。在 DNA 中,有 4 种核苷酸以字母 A、C、G 和 T 表示。人类(或者更准确地说是智人)有 30 亿个核苷酸对。例如,人类 DNA 的一小部分可能是:
在这个例子中,如果想从这个字符串中选择任何 4 个连续的核苷酸(即字母),它将是一个长度为 4 的k-mer(我们称之为4-mer)。以下是从示例中导出的一些 4-mers 示例。
对于本文,让我们生成所有可能的 13-mers。从数学上讲,这是一个置换问题。因此,我们有 413(=67108864)可能的 13-mers。我用一个简单的算法在 C++ 和 Python 中生成结果。让我们看看不同 Python 版本和 C++ 的比较结果。 对比 Python 和 C++ 的结果Python 不同版本的测试
上面这个脚本已经可以运行了,但是我们希望使用它来测试 Python 的各种版本,而不仅仅是当前安装(或激活)的版本。测试多个 Python 版本的最简单方法是使用 Docker。Python 维护许多 docker 镜像。当然,所有受支持的版本,也包括一些生命周期结束(EOL)的版本,如 2.7 或 3.2。要使用 Docker,您需要安装它。在 Linux 和 Mac 上相对容易,在 Windows 上我不太确定,但可能也不难。我建议只安装 docker CLI,桌面对我来说太臃肿了。要在容器化的 Python 环境中运行本地脚本,请运行:
为了自动化各种版本的测试,我们当然也会使用 Python。这个脚本只需启动一个子进程,以启动具有特定 Python 版本的容器,然后收集结果。没什么特别的:
运行这些测试时,根据处理器的不同,绝对值会因机器而异(它占用大量 CPU)。以下是最近 7 个主要 Python 版本的结果:
Python 3.11 的基准测试平均耗时 6.46 秒。与之前的版本(3.10)相比,这几乎快了 37%。非常令人印象深刻!版本 3.9 和 3.10 之间的差异大致相同,使 3.11 几乎快了 70%!把所有的点在下图中画出来。 C++ 的测试当谈到速度时,我们总是有一个人说:如果你想要速度,为什么不使用 C。
下面我们用 C++ 实现上面的 K-mers 算法。
众所周知,C++ 是一种编译语言,因此,我们需要先编译源代码,然后才能使用它。安装了 C++ 的基础软件之后,可以键入:
编译后,只需运行构建可执行文件。输出应如下所示:
每个循环平均需要 8.945 秒来计算。 我们必须同意这一点,因为它真的很快。只花了 8.945 秒就完成了我们以前用 Python 编程的相同循环。让我们把它作为一条线添加到前面的绘图中,如下图所示。 现在,在对前面的数字进行了长时间的分析之后,我们清楚地看到了Python的发展势头。自版本 3.9 以来,Python 的速度提高了约 35%。Python开发人员提到,接下来的两个版本将有显著的速度提升,因此,我们可以假设这个速度将保持不变(是的,超级安全的假设)。 现在的问题是,在这种势头得到修正的情况下,Python 何时才能超越 C++ 时代。为此,我们当然可以使用推断来预测下一个 Python 版本的运行时间。这些可以在下图中看到: 结果真是太棒了!如果保持这种迭代的速度,Python 3.14 将比 C++ 更快。 声明虽然这些 Python3.5 到 Python3.11 的基准测试是有效的,但这种推断当然只是一个玩笑。XKCD 风格的画图也是另一种提醒;-) 如果您想在各种 Python 版本上运行这些测试或您自己的测试,请在我的 Github 页面上下载代码。 如果您有任何意见,请告诉我! 本文由 mdnice 多平台发布 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 | -2024/12/26 2:41:30- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |
数据统计 |