IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> python数学建模--线性规划问题案例及求解 -> 正文阅读

[Python知识库]python数学建模--线性规划问题案例及求解

本博客参考:

  1. 《python数学实验与建模》
  2. 《MATLAB数学建模经典案例实战》

数学问题:线性规划问题

m a x ? z = 8 x 1 ? 2 x 2 + 3 x 3 ? x 4 ? 2 x 5 { x 1 + x 2 + x 3 + x 4 + x 5 ≤ 400 x 1 + 2 x 2 + 2 x 3 + x 4 + 6 x 5 ≤ 800 2 x 1 + x 2 + 6 x 3 ≤ 200 x 3 + x 4 + 5 5 ≤ 200 0 ≤ x i ≤ 99 , i = 1 , 2 , 3 , 4 x 5 ≥ ? 10 max \ z=8x_1-2x_2+3x_3-x_4-2x_5\\ \left\{ \begin{aligned} &x_1+x_2+x_3+x_4+x_5\leq 400\\ & x_1+2x_2+2x_3+x_4+6x_5\leq800\\ &2x_1+x_2+6x_3\leq200\\ &x_3+x_4+5_5\leq200\\ &0\leq x_i\leq99,i=1,2,3,4\\ &x_5\geq-10\\ \end{aligned} \right. max?z=8x1??2x2?+3x3??x4??2x5?? ? ???x1?+x2?+x3?+x4?+x5?400x1?+2x2?+2x3?+x4?+6x5?8002x1?+x2?+6x3?200x3?+x4?+55?2000xi?99,i=1,2,3,4x5??10?

程序设计

from scipy.optimize import linprog

c=[-8,2,-3,1,2]
A=[[1,1,1,1,1],[1,2,2,1,6],[2,1,6,0,0],[0,0,1,1,5]]
b=[[400],[800],[200],[200]]
aeq=None
beq=None
bounds=((0, 99),(0, 99),(0, 99),(0, 99),(-10,None))
res=linprog(c=c, A_ub=A, b_ub=b, A_eq=aeq, b_eq=beq, bounds=bounds,)

运行结果

在这里插入图片描述

结果分析

从中我们看出,目标函数z的最大值应为823左右,此时决策变量 x 1 ? x 5 x_1-x_5 x1??x5?的值分别为[99,0,0.3,0,-10]

实际应用1:加工厂的生产计划

一家加工厂使用牛奶生产A,B两种奶制品,1桶牛奶经甲机器加工12小时得到3kgA,也可以经过乙机器8小时得到4kgB,根据市场需求,生产的A、B可以全部出售并且每kgA获利24元、每kgB获利16元。现在该工厂每天获得50桶牛奶供应,所有工人的最大劳动时间之和为480x小时,甲机器每天最多加工100kgA,乙机器加工不限量,请你为该工厂设计生产计划,使得每天的利润最大

设置未知数

假设每天用于生产A产品的牛奶为 x 1 x_1 x1?桶,用于生产B产品的牛奶为 x 2 x_2 x2?桶,每天的利润为 z z z元,根据题意建立数学模型

建立数学模型

m a x ? z = 3 ? 24 x 1 + 4 ? 16 x 2 { x 1 + x 2 ≤ 50 12 x 1 + 8 x 2 ≤ 800 3 x 1 ≤ 100 x 1 ≥ 0 , x 2 ≥ 0 max \ z=3*24x_1+4*16x_2\\ \left\{ \begin{aligned} x_1+x_2\leq 50\\ 12x_1+8x_2\leq800\\ 3x_1\leq100\\ x_1\geq0,x_2\geq0 \end{aligned} \right. max?z=3?24x1?+4?16x2?? ? ??x1?+x2?5012x1?+8x2?8003x1?100x1?0,x2?0?
转化为标准形式
m i n ? z = ? 3 ? 24 x 1 ? 4 ? 16 x 2 { x 1 + x 2 ≤ 50 12 x 1 + 8 x 2 ≤ 800 3 x 1 ≤ 100 x 1 ≥ 0 , x 2 ≥ 0 min \ z=-3*24x_1-4*16x_2\\ \left\{ \begin{aligned} x_1+x_2\leq 50\\ 12x_1+8x_2\leq800\\ 3x_1\leq100\\ x_1\geq0,x_2\geq0 \end{aligned} \right. min?z=?3?24x1??4?16x2?? ? ??x1?+x2?5012x1?+8x2?8003x1?100x1?0,x2?0?

程序设计

from scipy.optimize import linprog
c=[-72,-64]
A=[[1,1],[12,8]]
b=[[50],[480]]
bounds=((0,100/3.0),(0,None))

res=linprog(c=c, A_ub=A, b_ub=b, A_eq=None, b_eq=None, bounds=bounds) 

运行结果
在这里插入图片描述

结果分析

从上面我们可以看出,利润最大值在3360元左右,达到最大值时,A、B产品的牛奶日用量分别是20桶、30桶

实际应用2:油料加工厂的采购和加工计划

某加工厂加工一种油,原料为五种油(植物油1,植物油2、非植物油1,非植物油2、非植物油3),每种油的价格、硬度如图表所示,最终生产的成品将以150英镑/吨

植物油1植物油2非植物油1非植物油2非植物油3
进货价格110120130110115
硬度值8.86.12.04.25.0

每个月能够提炼的植物油不超过200吨、非植物油不超过250吨,假设提炼过程中油料没有损失,提炼费用忽略不计,并且最终的产品的硬度需要在(3-6)之间(假设硬度的混合时线性的)。根据以上信息,请你为加工厂指定月采购和加工计划

设置未知数

假设 x 1 , x 2 , x 3 , x 4 , x 5 x_1,x_2,x_3,x_4,x_5 x1?,x2?,x3?,x4?,x5?分别为每月需要采购的原料油吨数, x 6 x_6 x6?为每个月加工的成品油吨数,根据题意建立数学模型

建立数学模型

m a x ? z = ? 110 x 1 ? 120 x 2 ? 130 x 3 ? 110 x 4 ? 115 x 5 + 150 x 6 { x 1 + x 2 ≤ 200 x 3 + x 4 + x 5 ≤ 250 8.8 x 1 + 6.1 x 2 + 2.0 x 3 + 4.2 x 4 + 5.0 x 5 ≤ 6 x 6 8.8 x 1 + 6.1 x 2 + 2.0 x 3 + 4.2 x 4 + 5.0 x 5 ≥ 3 x 6 x 1 + x 2 + x 3 + x 4 + x 5 = x 6 x i ≥ 0 , i = 1 , 2 , 3 , . . . , 6 max \ z=-110x_1-120x_2-130x_3-110x_4-115x_5+150x_6\\ \left\{ \begin{aligned} x_1+x_2\leq 200\\ x_3+x_4+x_5\leq250\\ 8.8x_1+6.1x_2+2.0x_3+4.2x_4+5.0x_5\leq6x_6\\ 8.8x_1+6.1x_2+2.0x_3+4.2x_4+5.0x_5\geq3x_6\\ x_1+x_2+x_3+x_4+x_5=x_6\\ x_i\geq0,i=1,2,3,...,6 \end{aligned} \right. max?z=?110x1??120x2??130x3??110x4??115x5?+150x6?? ? ??x1?+x2?200x3?+x4?+x5?2508.8x1?+6.1x2?+2.0x3?+4.2x4?+5.0x5?6x6?8.8x1?+6.1x2?+2.0x3?+4.2x4?+5.0x5?3x6?x1?+x2?+x3?+x4?+x5?=x6?xi?0,i=1,2,3,...,6?

程序设计

from scipy.optimize import linprog

c=[110,120,130,110,115,-150]
A=[[1,1,0,0,0,0],[0,0,1,1,1,0],[8.8,6.1,2.0,4.2,5.0,-6],[-8.8,-6.1,-2.0,-4.2,-5.0,3]]
b=[[200],[250],[0],[0]]
aeq=[[1,1,1,1,1,-1]]
beq=[[0]]
bounds=((0, None),(0, None),(0, None),(0, None),(0,None),(0,450))
# bounds=((0, None),(0, None),(0, None),(0, None),(0,None),(0,None))
res=linprog(c=c, A_ub=A, b_ub=b, A_eq=aeq, b_eq=beq, bounds=bounds)

运行结果
在这里插入图片描述

结果分析

从上面我们可以看到,五种原料油的采购量分别为[159.25,40.7407,0,250,0](吨),此时总利润可以达到最大,约为17592英镑/月

笔者发现的一个没有用的小技巧:我们知道 x 6 x_6 x6?变量代表的是每个月的吨数,bounds参数设置决策变量的取值区间,当在bounds中对x_6的上界不加限制时,即(0,None),模型返回的结果中仍然将 x 6 x_6 x6?收敛至450,你知道这是为什么吗?

遗留的问题

经过这么多的应用,我们已经大致明白了scipy.optimize.linprog()函数的使用过程,也惊叹于它的便利之处,但是不知道你是否能发现该函数的缺点?
我们来看下面一个问题

钢管加工用料问题

某零售商从钢管厂进货后将钢管切割后卖给客户,某次进货该零售商得到了若干1850mm长的原料钢管。现有一客户需要15根290mm、28根315mm、21根350mm、30根455mm的钢管。对于一个原料钢管有四种切割模式,每次切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品),为减少余料浪费,每种切割模式下的余料浪费不能超过100mm。(要完成该客户的需求,需要若干根原料钢管,可能用到四种切割模式,现规定使用频率最多的切割模式按照一根原料钢管价格的1/10收取加工费,使用频率次之的切割模式按照一根原料钢管价格的2/10收取加工费,依次类推)。现在求使得该零售商总费用最小的切割计划?

分析

仔细分析我们会发现,这个问题的线性规划和上面的两个实际问题有很大不同。

在上面的问题中,决策变量只有一种 x 1 ? x n x_1-x_n x1??xn?,而且决策变量的系数的都是常数(比如 x 3 + x 4 + x 5 ≤ 250 x_3+x_4+x_5\leq250 x3?+x4?+x5?250中的每个自变量系数都是1)。但是在该问题中似乎有两种决策变量:切割模式的使用频次 x i x_i xi?、每种切割模式下对于一根原料钢管产生的成品钢管种类及数量 r i j r_{ij} rij?(i表示第i种切割模式,j表示第j种成品钢管)。

scipy.optimize.linprog()的缺陷?

这就让我们在列举约束条件时遇到了很大的困难,比如其中一个不等式是这样的 ∑ i = 1 4 x i × r 1 i ≥ 15 ( i = 1...4 ) \sum^4_{i=1}x_i\times r_{1i}\geq15(i=1...4) i=14?xi?×r1i?15(i=1...4),看到这里我们发现两个决策变量相乘,如果继续使用scipy.optimize.linprog()函数,参数A_ub怎么取?参数bounds到底该以谁作为决策变量?

现在我们似乎遇到了困难,实际上并不是linprog()函数的问题,因为函数就是用来求解线性规划问题的,而我们现在提出的这个问题是一个非线性规划问题,所以,要解决它我们需要“另辟蹊径”了!下一个博客我们将用另外一个第三方库解决这个问题

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2022-10-22 21:11:19  更:2022-10-22 21:12:03 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/26 1:51:47-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计