前言
一提到python爬虫,词云图,就头大,我们就从简单开始,一步一步进行
python爬虫
一、基本框架
此代码只对python的基本框架进行描述
# -*- coding: utf-8 -*-#
#基本框架
#一、库的引用
from bs4 import BeautifulSoup # 网页解析,获取数据
import re # 正则表达式,进行文字匹配
import urllib.request, urllib.error # 制定URL,获取网页数据
#二、主函数
def main():
a = 1
# 爬取网页,获取数据
baseurl = "https://news.163.com/"
Datelist = getDate(baseurl)
#保存
savepath = ".\\新闻2.xls"
saveDate(savepath, Datelist, a)
# 三、爬网页
def getDate(baseurl, a):
datelist = [] #存为列表
#四、保存
def saveDate(savepath, Datelist, a):
print("...")
if __name__ == "__main__":
main()
二、爬取网页
爬取网页首先我们需要获取网页链接,我们定义一个函数名字叫做:askURL(url)
爬取了网页接下来我们需要的就是获取网页内容,我们写一个叫做?getData(baseUrl)的函数
from bs4 import BeautifulSoup # 网页解析,获取数据
import urllib.request, urllib.error # 制定URL,获取网页数据
def main():
a = 1
# 爬取网页,获取数据
baseurl = "https://news.163.com/"
Datelist, a = getDate(baseurl, a)
savepath = ".\\新闻2.xls"
saveDate(savepath, Datelist, a)
# 得到指定URL的网页内容
def askURL(url):
head = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36 Edge/18.17763"}
# 模拟浏览器头部信息,向服务器发送消息
request = urllib.request.Request(url, headers=head)
html = "" #字符串存
try:
response = urllib.request.urlopen(request)
html = response.read().decode("utf-8", 'ignore')
print(html)
except urllib.error.URLError as e:
if hasattr(e, "code"):
print(e.code)
if hasattr(e, "reason"):
print(e.reason)
return html
#爬网页
def getDate(baseurl, a):
datelist = [] #存为列表
html = askURL(baseurl)
soup = BeautifulSoup(html, "html.parser")
return datelist, a
#保存
def saveDate(savepath, Datelist, a):
print("...")
if __name__ == "__main__":
main()
实现了如图所示的代码,但是数据很杂乱且庞大,我们还需做到数据的清洗
三、数据清洗
# -*- coding: utf-8 -*-#
from bs4 import BeautifulSoup # 网页解析,获取数据
import re # 正则表达式,进行文字匹配
import urllib.request, urllib.error # 制定URL,获取网页数据
def main():
a = 1
# 爬取网页,获取数据
baseurl = "https://news.163.com/"
Datelist, a = getDate(baseurl, a)
savepath = ".\\新闻2.xls"
saveDate(savepath, Datelist, a)
# 得到指定URL的网页内容
def askURL(url):
head = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36 Edge/18.17763"}
# 模拟浏览器头部信息,向服务器发送消息
request = urllib.request.Request(url, headers=head)
html = "" #字符串存
try:
response = urllib.request.urlopen(request)
html = response.read().decode("utf-8", 'ignore')
# print(html)
except urllib.error.URLError as e:
if hasattr(e, "code"):
print(e.code)
if hasattr(e, "reason"):
print(e.reason)
return html
#爬网页
def getDate(baseurl, a):
datelist = [] #存为列表
html = askURL(baseurl)
soup = BeautifulSoup(html, "html.parser")
for item in soup.select(".hidden"): # 查找符合要求的字符串,形成列表
for c in item.select('a'):
print(c)
return datelist, a
#保存
def saveDate(savepath, Datelist, a):
print("...")
if __name__ == "__main__":
main()
?四、保存数据
爬取到了数据接下来我们需要保存数据(这里我们采取保存数据到excel中)
# -*- coding: utf-8 -*-#
from bs4 import BeautifulSoup # 网页解析,获取数据
import re # 正则表达式,进行文字匹配
import urllib.request, urllib.error # 制定URL,获取网页数据
import xlwt # 进行excel操作
def main():
a = 1
# 爬取网页,获取数据
baseurl = "https://news.163.com/"
Datelist, a = getDate(baseurl, a)
savepath = "新闻2.xls"
saveDate(savepath, Datelist, a)
# 得到指定URL的网页内容
def askURL(url):
head = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36 Edge/18.17763"}
# 模拟浏览器头部信息,向服务器发送消息
request = urllib.request.Request(url, headers=head)
html = "" #字符串存
try:
response = urllib.request.urlopen(request)
html = response.read().decode("utf-8", 'ignore')
# print(html)
except urllib.error.URLError as e:
if hasattr(e, "code"):
print(e.code)
if hasattr(e, "reason"):
print(e.reason)
return html
findlink = re.compile(r'<a href="(.*?)">')
findjs = re.compile(r'">(.*)</a>')
#爬网页
def getDate(baseurl, a):
datelist = [] #存为列表
html = askURL(baseurl)
soup = BeautifulSoup(html, "html.parser")
for item in soup.select(".hidden"): # 查找符合要求的字符串,形成列表
for c in item.select('a'):
#print(c)
date = []
c = str(c)
Js = findjs.findall(c)
date.append(Js)
Link = findlink.findall(c)
date.append(Link[0])
date.append('')
Html = askURL(Link[0])
Soup = BeautifulSoup(Html, "html.parser")
for item1 in Soup.select(".post_body"):
date.insert(2, item1.get_text().strip())
print("已保存第%.3d条新闻数据" % a)
a += 1
datelist.append(date)
return datelist, a
#保存
def saveDate(savepath, Datelist, a):
book = xlwt.Workbook(encoding="utf-8", style_compression=0) # 创建workbook对象
sheet = book.add_sheet(savepath, cell_overwrite_ok=True) # 创建工作表
crl = ("新闻标题", "新闻链接", "新闻内容")
for i in range(0, len(crl)):
sheet.write(0, i, crl[i])
for i in range(1, a):
for j in range(0, len(crl)):
sheet.write(i, j, Datelist[i - 1][j])
print("保存完毕")
book.save(savepath)
if __name__ == "__main__":
main()
词云图
使用时需要引用wordcloud? 和 matplotlib,具体的效果图如下
from wordcloud import WordCloud
import matplotlib.pyplot as plt
#打开文本
text=open('头条新闻.txt',encoding="utf-8").read()
#生成
#字体地址,图片长宽,背景颜色
wc=WordCloud(font_path='C:\Windows\Fonts\msyh.ttc',width=800,height=600,mode="RGBA",background_color='white').generate(text)
#显示
plt.imshow(wc)
plt.axis("off")#消除坐标
plt.show()
#保存
wc.to_file("2.wordcloud2.png")
再进一步
虽然已经制作出了词云图,但长长的句子并不是我们的本意,我们得引入分词模块
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import jieba
#打开文本
text=open('头条新闻.txt',encoding="utf-8").read()
#中文分词
text=' '.join(jieba.cut(text))#形成列表,将列表里的词用空格分开并拼成长字符串
#生成
#字体地址,图片长宽,背景颜色
wc=WordCloud(font_path='C:\Windows\Fonts\msyh.ttc',width=800,height=600,mode="RGBA",background_color='white').generate(text)
#显示
plt.imshow(wc)
plt.axis("off")#消除坐标
plt.show()
#保存
wc.to_file("2.wordcloud2.png")
写在最后
👍🏻点赞,你的认可是我创作的动力!
?收藏,你的青睐是我努力的方向!
??评论,你的意见是我进步的财富!
|