IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> Python Record -> 正文阅读

[Python知识库]Python Record

1. partial?

from functools import partial
  
# A normal function
def f(a, b, c, x):
    print("a",a)
    print("b",b)
    print("c",c)
    print("x",x)
    return 1000*a + 100*b + 10*c + x
  
# A partial function that calls f with
g = partial(f, 3, 1, x=4)

# Calling g()
print(g(5))

?a= 3, b=1, c=5, x=4, 3154

2. nn. LayerNorm

torch.nn.LayerNorm(normalized_shape, eps=1e-05, 
                    elementwise_affine=True, device=None, dtype=None)

??????normalized_shape?(int?or?list?or?torch.Size) –input shape from an expected input of size

? ? ? ? ?[?×normalized_shape[0]×normalized_shape[1]×…×normalized_shape[?1]]

  • If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size.

  • eps?– a value added to the denominator for numerical stability. Default: 1e-5

  • elementwise_affine?– a boolean value that when set to?True, this module has learnable per-element affine parameters initialized to ones (for weights) and zeros (for biases). Default:?True.

# NLP Example
batch, sentence_length, embedding_dim = 20, 5, 10
embedding = torch.randn(batch, sentence_length, embedding_dim)
layer_norm = nn.LayerNorm(embedding_dim)
# Activate module
layer_norm(embedding)
# Image Example
N, C, H, W = 20, 5, 10, 10
input = torch.randn(N, C, H, W)
# Normalize over the last three dimensions (i.e. the channel and spatial dimensions)
# as shown in the image below
layer_norm = nn.LayerNorm([C, H, W])
output = layer_norm(input)

3. a or b

t1=None
t2=2
t1= t1 or t2
print(t1)

Results: 2?

t1=1
t2=2
t1= t1 or t2
print(t1)

Results:1?

4. nn.GELU

torch.nn.GELU(approximate='none')

Applies the Gaussian Error Linear Units functionwhere?\Phi(x)Φ(x)?is the Cumulative Distribution Function for Gaussian Distribution.

>>> m = nn.GELU()
>>> input = torch.randn(2)
>>> output = m(input)

5. nn.Dropout

torch.nn.Dropout(p=0.5,?inplace=False)
>>> m = nn.Dropout(p=0.2)
>>> input = torch.randn(20, 16)
>>> output = m(input)

6. nn.linspace

# Importing the PyTorch library
import torch

# Applying the linspace function and
# storing the resulting tensor in 't'
a = torch.linspace(3, 10, 5)
print("a = ", a)

b = torch.linspace(start =-10, end = 10, steps = 5)
print("b = ", b)

a =  tensor([ 3.0000,  4.7500,  6.5000,  8.2500, 10.0000])
b =  tensor([-10.,  -5.,   0.,   5.,  10.])

7. nn.indetity

seed =4
m = nn.Identity()
input = torch.randn(4,4)
output = m(input)
print("m",m)
print("input",input)
print("output",output)
print(output.size())

8. nn.init.trunc_normal_()

torch.nn.init.trunc_normal_(tensor, mean=0.0, std=1.0, a=- 2.0, b=2.0)

?Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution

?\mathcal{N}(\text{mean}, \text{std}^2)N(mean,std2)?

with values outside?[a, b][a,b]?redrawn until they are within the bounds. The method used for generating the random values works best when?a

\leq \text{mean} \leq ba≤mean≤b.

9. OrderedDictT

from collections import OrderedDict
 
print("This is a Dict:\n")
d = {}
d['a'] = 1
d['b'] = 2
d['c'] = 3
d['d'] = 4
 
for key, value in d.items():
    print(key, value)
 
print("\nThis is an Ordered Dict:\n")
od = OrderedDict()
od['a'] = 1
od['b'] = 2
od['c'] = 3
od['d'] = 4
for key, value in od.items():
    print(key, value)

print("\nThis is an *****Ordered Dict:\n")
od = OrderedDict([("a1",1),("b1",2),("c1",3),("d1",4)])

 
for key, value in od.items():
    print(key, value)

?The above three oupts are the same

10. random.seed()

How Seed Function Works ?

Seed function is used to save the state of a random function, so that it can generate same random numbers on multiple executions of the code on the same machine or on different machines (for a specific seed value). The seed value is the previous value number generated by the generator. For the first time when there is no previous value, it uses current system time.?

Using random.seed() function

Here we will see how we can generate the same random number every time with the same seed value.?

# random module is imported
import random
for i in range(5):

	# Any number can be used in place of '0'.
	random.seed(0)

	# Generated random number will be between 1 to 1000.
	print(random.randint(1, 1000))

Output:
865
865
865
865
865


# importing random module
import random
random.seed(3)
# print a random number between 1 and 1000.
print(random.randint(1, 1000))
# if you want to get the same random number again then,
random.seed(3)
print(random.randint(1, 1000))
# If seed function is not used
# Gives totally unpredictable responses.
print(random.randint(1, 1000))

Output:
244
244
607

?random.seed(0)? the next random.randint(1) get same int.?

random.seed(1)? ?the next random.randint(1) get different int.

11. Tensor, List? ?Convert each other

a. Tensors concate to a Tensor

import torch
#step: generate a tensor with shape([5,3,3,4])
#      we can think B is 5, N_views is 3, Token is 3, Dim is 4
a=torch.arange(5*3*3*4).reshape([5,3,3,4])


print(a.shape)
print("a=",a)
torch.Size([5, 3, 3, 4])
a= tensor([[[[  0,   1,   2,   3],
          [  4,   5,   6,   7],
          [  8,   9,  10,  11]],

         [[ 12,  13,  14,  15],
          [ 16,  17,  18,  19],
          [ 20,  21,  22,  23]],

         [[ 24,  25,  26,  27],
          [ 28,  29,  30,  31],
          [ 32,  33,  34,  35]]],


        [[[ 36,  37,  38,  39],
          [ 40,  41,  42,  43],
          [ 44,  45,  46,  47]],

         [[ 48,  49,  50,  51],
          [ 52,  53,  54,  55],
          [ 56,  57,  58,  59]],

         [[ 60,  61,  62,  63],
          [ 64,  65,  66,  67],
          [ 68,  69,  70,  71]]],


        [[[ 72,  73,  74,  75],
          [ 76,  77,  78,  79],
          [ 80,  81,  82,  83]],

         [[ 84,  85,  86,  87],
          [ 88,  89,  90,  91],
          [ 92,  93,  94,  95]],

         [[ 96,  97,  98,  99],
          [100, 101, 102, 103],
          [104, 105, 106, 107]]],


        [[[108, 109, 110, 111],
          [112, 113, 114, 115],
          [116, 117, 118, 119]],

         [[120, 121, 122, 123],
          [124, 125, 126, 127],
          [128, 129, 130, 131]],

         [[132, 133, 134, 135],
          [136, 137, 138, 139],
          [140, 141, 142, 143]]],


        [[[144, 145, 146, 147],
          [148, 149, 150, 151],
          [152, 153, 154, 155]],

         [[156, 157, 158, 159],
          [160, 161, 162, 163],
          [164, 165, 166, 167]],

         [[168, 169, 170, 171],
          [172, 173, 174, 175],
          [176, 177, 178, 179]]]])




a_local2=[]
a=a.reshape(3,5,3,4)
print("a.reshape",a)


a.reshape tensor([[[[  0,   1,   2,   3],
          [  4,   5,   6,   7],
          [  8,   9,  10,  11]],

         [[ 12,  13,  14,  15],
          [ 16,  17,  18,  19],
          [ 20,  21,  22,  23]],

         [[ 24,  25,  26,  27],
          [ 28,  29,  30,  31],
          [ 32,  33,  34,  35]],

         [[ 36,  37,  38,  39],
          [ 40,  41,  42,  43],
          [ 44,  45,  46,  47]],

         [[ 48,  49,  50,  51],
          [ 52,  53,  54,  55],
          [ 56,  57,  58,  59]]],


        [[[ 60,  61,  62,  63],
          [ 64,  65,  66,  67],
          [ 68,  69,  70,  71]],

         [[ 72,  73,  74,  75],
          [ 76,  77,  78,  79],
          [ 80,  81,  82,  83]],

         [[ 84,  85,  86,  87],
          [ 88,  89,  90,  91],
          [ 92,  93,  94,  95]],

         [[ 96,  97,  98,  99],
          [100, 101, 102, 103],
          [104, 105, 106, 107]],

         [[108, 109, 110, 111],
          [112, 113, 114, 115],
          [116, 117, 118, 119]]],


        [[[120, 121, 122, 123],
          [124, 125, 126, 127],
          [128, 129, 130, 131]],

         [[132, 133, 134, 135],
          [136, 137, 138, 139],
          [140, 141, 142, 143]],

         [[144, 145, 146, 147],
          [148, 149, 150, 151],
          [152, 153, 154, 155]],

         [[156, 157, 158, 159],
          [160, 161, 162, 163],
          [164, 165, 166, 167]],

         [[168, 169, 170, 171],
          [172, 173, 174, 175],
          [176, 177, 178, 179]]]])





for j in range(a.shape[0]):
    a_local2.append(a[j,:,:,:])  
print(torch.cat(a_local2))
torch.cat(a_local2).shape   torch.Size([15, 3, 4])
tensor([[[  0,   1,   2,   3],
         [  4,   5,   6,   7],
         [  8,   9,  10,  11]],

        [[ 12,  13,  14,  15],
         [ 16,  17,  18,  19],
         [ 20,  21,  22,  23]],

        [[ 24,  25,  26,  27],
         [ 28,  29,  30,  31],
         [ 32,  33,  34,  35]],

        [[ 36,  37,  38,  39],
         [ 40,  41,  42,  43],
         [ 44,  45,  46,  47]],

        [[ 48,  49,  50,  51],
         [ 52,  53,  54,  55],
         [ 56,  57,  58,  59]],

        [[ 60,  61,  62,  63],
         [ 64,  65,  66,  67],
         [ 68,  69,  70,  71]],

        [[ 72,  73,  74,  75],
         [ 76,  77,  78,  79],
         [ 80,  81,  82,  83]],

        [[ 84,  85,  86,  87],
         [ 88,  89,  90,  91],
         [ 92,  93,  94,  95]],

        [[ 96,  97,  98,  99],
         [100, 101, 102, 103],
         [104, 105, 106, 107]],

        [[108, 109, 110, 111],
         [112, 113, 114, 115],
         [116, 117, 118, 119]],

        [[120, 121, 122, 123],
         [124, 125, 126, 127],
         [128, 129, 130, 131]],

        [[132, 133, 134, 135],
         [136, 137, 138, 139],
         [140, 141, 142, 143]],

        [[144, 145, 146, 147],
         [148, 149, 150, 151],
         [152, 153, 154, 155]],

        [[156, 157, 158, 159],
         [160, 161, 162, 163],
         [164, 165, 166, 167]],

        [[168, 169, 170, 171],
         [172, 173, 174, 175],
         [176, 177, 178, 179]]])



c=torch.cat(a_local2).reshape(5,3,3,4)
print("c=",c)
c= tensor([[[[  0,   1,   2,   3],
          [  4,   5,   6,   7],
          [  8,   9,  10,  11]],

         [[ 12,  13,  14,  15],
          [ 16,  17,  18,  19],
          [ 20,  21,  22,  23]],

         [[ 24,  25,  26,  27],
          [ 28,  29,  30,  31],
          [ 32,  33,  34,  35]]],


        [[[ 36,  37,  38,  39],
          [ 40,  41,  42,  43],
          [ 44,  45,  46,  47]],

         [[ 48,  49,  50,  51],
          [ 52,  53,  54,  55],
          [ 56,  57,  58,  59]],

         [[ 60,  61,  62,  63],
          [ 64,  65,  66,  67],
          [ 68,  69,  70,  71]]],


        [[[ 72,  73,  74,  75],
          [ 76,  77,  78,  79],
          [ 80,  81,  82,  83]],

         [[ 84,  85,  86,  87],
          [ 88,  89,  90,  91],
          [ 92,  93,  94,  95]],

         [[ 96,  97,  98,  99],
          [100, 101, 102, 103],
          [104, 105, 106, 107]]],


        [[[108, 109, 110, 111],
          [112, 113, 114, 115],
          [116, 117, 118, 119]],

         [[120, 121, 122, 123],
          [124, 125, 126, 127],
          [128, 129, 130, 131]],

         [[132, 133, 134, 135],
          [136, 137, 138, 139],
          [140, 141, 142, 143]]],


        [[[144, 145, 146, 147],
          [148, 149, 150, 151],
          [152, 153, 154, 155]],

         [[156, 157, 158, 159],
          [160, 161, 162, 163],
          [164, 165, 166, 167]],

         [[168, 169, 170, 171],
          [172, 173, 174, 175],
          [176, 177, 178, 179]]]])


a_local2=torch.cat(a_local2).reshape(5,9,4)
print("torch_a.shape",a_local2.shape)
print("torch_a",a_local2)
torch_a.shape torch.Size([5, 9, 4])
torch_a tensor([[[  0,   1,   2,   3],
         [  4,   5,   6,   7],
         [  8,   9,  10,  11],
         [ 12,  13,  14,  15],
         [ 16,  17,  18,  19],
         [ 20,  21,  22,  23],
         [ 24,  25,  26,  27],
         [ 28,  29,  30,  31],
         [ 32,  33,  34,  35]],

        [[ 36,  37,  38,  39],
         [ 40,  41,  42,  43],
         [ 44,  45,  46,  47],
         [ 48,  49,  50,  51],
         [ 52,  53,  54,  55],
         [ 56,  57,  58,  59],
         [ 60,  61,  62,  63],
         [ 64,  65,  66,  67],
         [ 68,  69,  70,  71]],

        [[ 72,  73,  74,  75],
         [ 76,  77,  78,  79],
         [ 80,  81,  82,  83],
         [ 84,  85,  86,  87],
         [ 88,  89,  90,  91],
         [ 92,  93,  94,  95],
         [ 96,  97,  98,  99],
         [100, 101, 102, 103],
         [104, 105, 106, 107]],

        [[108, 109, 110, 111],
         [112, 113, 114, 115],
         [116, 117, 118, 119],
         [120, 121, 122, 123],
         [124, 125, 126, 127],
         [128, 129, 130, 131],
         [132, 133, 134, 135],
         [136, 137, 138, 139],
         [140, 141, 142, 143]],

        [[144, 145, 146, 147],
         [148, 149, 150, 151],
         [152, 153, 154, 155],
         [156, 157, 158, 159],
         [160, 161, 162, 163],
         [164, 165, 166, 167],
         [168, 169, 170, 171],
         [172, 173, 174, 175],
         [176, 177, 178, 179]]])






15. Choose a Dimension in Multi-Dimension Tensors?

a=torch.arange(3*2*10).reshape([3,2,10])
print("a.shape",a.shape)
print("a=",a)

print("a[:,0]",a[:,0])
print("a[0,:]",a[0,:])

Results:

a.shape torch.Size([3, 2, 10])
a= tensor([[[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9],
         [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]],

        [[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
         [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]],

        [[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
         [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]]])
a[:,0] tensor([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9],
        [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
        [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])
a[0,:] tensor([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9],
        [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]])

?

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2022-11-05 00:24:53  更:2022-11-05 00:25:35 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/26 3:34:31-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计