| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 机器学习理论基础 | 极大似然估计 -> 正文阅读 |
|
[人工智能]机器学习理论基础 | 极大似然估计 |
极大似然估计,通俗理解来说,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值! 换句话说,极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。 可能有小伙伴就要说了,还是有点抽象呀。我们这样想,一当模型满足某个分布,它的参数值我通过极大似然估计法求出来的话。比如正态分布中公式如下: 如果我通过极大似然估计,得到模型中参数和的值,那么这个模型的均值和方差以及其它所有的信息我们是不是就知道了呢。确实是这样的。 极大似然估计中采样需满足一个重要的假设,就是所有的采样都是独立同分布的。 下面我通过俩个例子来帮助理解一下最大似然估计 但是首先看一下似然函数 的理解 对于这个函数: 输入有两个:x表示某一 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 | -2024/12/21 23:48:42- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |