一、本阶段的组队学习网站地址:[datawhale] 二、本期主要学习内容: 学习基于图神经网络的图表征学习方法,图表征学习要求根据节点属性、边和边的属性(如果有的话)生成一个向量作为图的表征,基于图表征我们可以做图的预测。 这个学习和前面不同之处,前面主要是只学习一个节点的特征,然后就可以进行分类。这个要结合边以及边的属性等生成一个总的向量进行学习。 基于图同构网络(Graph Isomorphism Network, GIN)的图表征网络是当前最经典的图表征学习网络,图同构网络的论文:How Powerful are Graph Neural Networks? 三、基于图同构网络(GIN)的图表征网络的实现 基于图同构网络的图表征学习主要包含以下两个过程:
- 首先计算得到节点表征;
- 其次对图上各个节点的表征做图池化(Graph Pooling),或称为图读出(Graph
Readout),得到图的表征(Graph Representation)。 主要代码如下:
import torch
from torch import nn
from torch_geometric.nn import global_add_pool, global_mean_pool, global_max_pool, GlobalAttention, Set2Set
from gin_node import GINNodeEmbedding
class GINGraphRepr(nn.Module):
def __init__(self, num_tasks=1, num_layers=5, emb_dim=300, residual=False, drop_ratio=0, JK="last", graph_pooling="sum"):
"""GIN Graph Pooling Module
Args:
num_tasks (int, optional): number of labels to be predicted. Defaults to 1 (控制了图表征的维度,dimension of graph representation).
num_layers (int, optional): number of GINConv layers. Defaults to 5.
emb_dim (int, optional): dimension of node embedding. Defaults to 300.
residual (bool, optional): adding residual connection or not. Defaults to False.
drop_ratio (float, optional): dropout rate. Defaults to 0.
JK (str, optional): 可选的值为"last"和"sum"。选"last",只取最后一层的结点的嵌入,选"sum"对各层的结点的嵌入求和。Defaults to "last".
graph_pooling (str, optional): pooling method of node embedding. 可选的值为"sum","mean","max","attention"和"set2set"。 Defaults to "sum".
Out:
graph representation
"""
super(GINGraphPooling, self).__init__()
self.num_layers = num_layers
self.drop_ratio = drop_ratio
self.JK = JK
self.emb_dim = emb_dim
self.num_tasks = num_tasks
if self.num_layers < 2:
raise ValueError("Number of GNN layers must be greater than 1.")
self.gnn_node = GINNodeEmbedding(num_layers, emb_dim, JK=JK, drop_ratio=drop_ratio, residual=residual)
if graph_pooling == "sum":
self.pool = global_add_pool
elif graph_pooling == "mean":
self.pool = global_mean_pool
elif graph_pooling == "max":
self.pool = global_max_pool
elif graph_pooling == "attention":
self.pool = GlobalAttention(gate_nn=nn.Sequential(
nn.Linear(emb_dim, emb_dim), nn.BatchNorm1d(emb_dim), nn.ReLU(), nn.Linear(emb_dim, 1)))
elif graph_pooling == "set2set":
self.pool = Set2Set(emb_dim, processing_steps=2)
else:
raise ValueError("Invalid graph pooling type.")
if graph_pooling == "set2set":
self.graph_pred_linear = nn.Linear(2*self.emb_dim, self.num_tasks)
else:
self.graph_pred_linear = nn.Linear(self.emb_dim, self.num_tasks)
def forward(self, batched_data):
h_node = self.gnn_node(batched_data)
h_graph = self.pool(h_node, batched_data.batch)
output = self.graph_pred_linear(h_graph)
if self.training:
return output
else:
return torch.clamp(output, min=0, max=50)
基于结点表征计算得到图表征的方法有:“sum”:对节点表征求和;“mean”:对节点表征求平均;“max”:取节点表征的最大值;“attention”:基于Attention对节点表征加权求和;“set2set”: 另一种基于Attention对节点表征加权求和的方法; 这段代码的作用: 首先采用GINNodeEmbedding模块对图上每一个节点做节点嵌入(Node Embedding),得到节点表征; 然后对节点表征做图池化得到图的表征; 最后用一层线性变换对图表征转换为对图的预测。 四、基于图同构网络的节点嵌入模块(GINNodeEmbedding Module) 用AtomEncoder对其做嵌入得到第0层节点表征(稍后我们再对AtomEncoder做分析)。 然后我们逐层计算节点表征,从第1层开始到第num_layers层,每一层节点表征的计算都以上一层的节点表征h_list[layer]、边edge_index和边的属性edge_attr为输入。 主要代码如下:
import torch
from mol_encoder import AtomEncoder
from gin_conv import GINConv
import torch.nn.functional as F
class GINNodeEmbedding(torch.nn.Module):
"""
Output:
node representations
"""
def __init__(self, num_layers, emb_dim, drop_ratio=0.5, JK="last", residual=False):
"""GIN Node Embedding Module"""
super(GINNodeEmbedding, self).__init__()
self.num_layers = num_layers
self.drop_ratio = drop_ratio
self.JK = JK
self.residual = residual
if self.num_layers < 2:
raise ValueError("Number of GNN layers must be greater than 1.")
self.atom_encoder = AtomEncoder(emb_dim)
self.convs = torch.nn.ModuleList()
self.batch_norms = torch.nn.ModuleList()
for layer in range(num_layers):
self.convs.append(GINConv(emb_dim))
self.batch_norms.append(torch.nn.BatchNorm1d(emb_dim))
def forward(self, batched_data):
x, edge_index, edge_attr = batched_data.x, batched_data.edge_index, batched_data.edge_attr
h_list = [self.atom_encoder(x)]
for layer in range(self.num_layers):
h = self.convs[layer](h_list[layer], edge_index, edge_attr)
h = self.batch_norms[layer](h)
if layer == self.num_layers - 1:
h = F.dropout(h, self.drop_ratio, training=self.training)
else:
h = F.dropout(F.relu(h), self.drop_ratio, training=self.training)
if self.residual:
h += h_list[layer]
h_list.append(h)
if self.JK == "last":
node_representation = h_list[-1]
elif self.JK == "sum":
node_representation = 0
for layer in range(self.num_layers + 1):
node_representation += h_list[layer]
return node_representation
五、GINConv–图同构卷积层 可以通过torch_geometric.nn.GINConv来使用PyG定义好的图同构卷积层,然而该实现不支持存在边属性的图。在这里我们自己自定义一个支持边属性的GINConv模块。
由于输入的边属性为类别型,因此我们需要先将类别型边属性转换为边表征。我们定义的GINConv模块遵循“消息传递、消息聚合、消息更新”这一过程。 主要代码如下:
import torch
from torch import nn
from torch_geometric.nn import MessagePassing
import torch.nn.functional as F
from ogb.graphproppred.mol_encoder import BondEncoder
class GINConv(MessagePassing):
def __init__(self, emb_dim):
'''
emb_dim (int): node embedding dimensionality
'''
super(GINConv, self).__init__(aggr = "add")
self.mlp = nn.Sequential(nn.Linear(emb_dim, emb_dim), nn.BatchNorm1d(emb_dim), nn.ReLU(), nn.Linear(emb_dim, emb_dim))
self.eps = nn.Parameter(torch.Tensor([0]))
self.bond_encoder = BondEncoder(emb_dim = emb_dim)
def forward(self, x, edge_index, edge_attr):
edge_embedding = self.bond_encoder(edge_attr)
out = self.mlp((1 + self.eps) *x + self.propagate(edge_index, x=x, edge_attr=edge_embedding))
return out
def message(self, x_j, edge_attr):
return F.relu(x_j + edge_attr)
def update(self, aggr_out):
return aggr_out
节点(原子)和边(化学键)的属性都为离散值,它们属于不同的空间,无法直接将它们融合在一起。通过嵌入(Embedding),我们可以将节点属性和边属性分别映射到一个新的空间,在这个新的空间中,我们就可以对节点和边进行信息融合。 六、Weisfeiler-Lehman Test (WL Test) 图同构性测试:两个图是同构的,意思是两个图拥有一样的拓扑结构,也就是说,我们可以通过重新标记节点从一个图转换到另外一个图。Weisfeiler-Lehman 图的同构性测试算法,简称WL Test,是一种用于测试两个图是否同构的算法。 七、作业 请画出下方图片中的6号、3号和5号节点的从1层到3层到WL子树。
|