IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 3.1 tensorflow 循环神经网络初探 -> 正文阅读

[人工智能]3.1 tensorflow 循环神经网络初探

循环神经网络是有一个状态和输入序列结合拟合出结果,然后状态会继续带入下一个序列

import numpy as np
X = [1,2] # 输入序列
state = [0.0,0.0] # 状态向量
# 分开定义不同输入部分的权重
w_cell_state = np.asarray([[0.1,0.2],[0.3,0.4]])
w_cell_input = np.asarray([0.5,0.6])
b_cell = np.asarray([0.1,-0.1])

#定义用于输出的全连接层参数
w_output = np.asarray([[1.0],[2.0]])
b_output = 0.1

# 按照时间顺序执行循环神经网络的前向传播过程
for i in range(len(X)):
    print(i)
    berfore_activation = np.dot(state,w_cell_input)+X[i]*w_cell_input +b_cell
    state = np.tanh(berfore_activation)

    # 根据当前时刻的状态计算出最终的输出
    final_output = np.dot(state,w_output) + b_output
    # 输出每个时刻的信息
    print('before activation:',berfore_activation)
    print("stae:",state)
    print("output:",final_output)
    '''
    0
    before activation: [ 0.6  0.5]
    stae: [ 0.53704957  0.46211716]
    output: [ 1.56128388]
    1
    before activation: [ 1.64579508  1.64579508]
    stae: [ 0.92827835  0.92827835]
    output: [ 2.88483504]
    '''

LSTM初探

# 以下是伪代码
import tensorflow as tf
# 在tensorflow中LSTM结构的定义是可以用一个简单的命令生成
lstm = tf.nn.rnn_cell.BasicLSTMCell(lstm_hidden_size)

# 在LSTM中状态初始化全为0的数组
# state是一个包含了两个张量的类,state.c为遗忘门,state.h为输入门
state = lstm.zero_state(batch_size,tf.float32)

loss = 0.0

for i in range(num_steps)
    #在第一个时刻声明LSTM结构中使用的变量,在之后的时刻都需要复用之前定义好的变量
    if i>0:
        tf.get_variable_scope().reuse_variables()
        # 每一步处理时间序列中的一个时刻和前一时刻的状态传入LSTM中就可以得到当前LSTM的输出
        lstm_output, state = lstm(current_input,state)
        
        final_output = fully_connected(lstm_output)
        loss += calc_loss(final_output,expected_output)

    

完整代码示例

import numpy as np
import tensorflow as tf

import matplotlib as mpl
mpl.use('agg')
from matplotlib import pyplot as plt
HIDDEN_SIZE = 30 # LSTM中隐藏节点的个数
NUM_LAYERS = 2 # LSTM的层数
TIMESTEPS = 10 # 循环神经网络训练序列长度
TRAINING_STEPS = 10000 # 训练轮数
BATCH_SIZE = 32 # batch的大小
TRAINING_EXAMPLES = 10000 # 训练集的个数
TESTING_EXAMPLES = 1000 # 测试集的个数
SAMPLE_GAP = 0.01 # 采样间隔

def generate_data(seq):
    X = []
    Y = []
    for i in range(len(seq)-TIMESTEPS):
        X.append(seq[i:i+TIMESTEPS])
        Y.append(seq[i+TIMESTEPS])
    return np.array(X,dtype=np.float32),np.array(Y,dtype=np.float32)

def lstm_model(X,Y,is_training):
    #print('defined cell')
    cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.BasicLSTMCell(HIDDEN_SIZE) for _ in range(NUM_LAYERS)])
    # 计算向前传播过程
    #print('calculate outputs')
    #print(cell,X)
    outputs, _ = tf.nn.dynamic_rnn(cell,X,dtype=tf.float32)
    # outputs是lstm每步的输出结果,结构为(batch_size,time,hidden_size),由于这个问题只关心最后一个时刻的输出
    
    output = outputs[:,-1,:]
    # 定义平方损失
    print('get predictions')
    predictions = tf.contrib.layers.fully_connected(output,1,activation_fn=None)
    # 只在训练时计算损失函数和优化步骤,测试时直接返回预测结果
    
    if not is_training:
        return predictions, None, None
    #print('calculate loss')
    loss = tf.losses.mean_squared_error(labels=Y,predictions = predictions)

    # 创建模型并优化
    print('start opt')
    train_op = tf.contrib.layers.optimize_loss(loss,tf.train.get_global_step(),optimizer='Adagrad',learning_rate = 0.1)
    return predictions,loss,train_op

def train(sess,train_X,train_Y):
    print('start training')
    # from_tensor_slices就是给数据集做切片,让变量和y对应起来,dataset里面的一个元素为{x:Xi,y:Yi}
    ds = tf.data.Dataset.from_tensor_slices((train_X,train_Y))
    # repeat就是复制样本,shuffle就是随机打乱,batch就是将样本组合成batch
    ds = ds.repeat().shuffle(1000).batch(BATCH_SIZE)
    # 从头到尾的读一遍数据,每次只取出一个数据batch
    X,Y = ds.make_one_shot_iterator().get_next()
    # 而tf.nn.dynamic_rnn()要求传入的数据集的维度是三维(batch_size, squence_length, num_features)。在这里因为特征是一维,因此没有显示。
    X = tf.expand_dims(X,axis=2)
    Y = tf.expand_dims(Y,axis=1)
    #print('defined x and y',X,Y)
    with tf.variable_scope('model'):
        print('load model')
        predictions, loss, train_op = lstm_model(X,Y,True)
    
    print('start initializer')
    sess.run(tf.global_variables_initializer())
    for i in range(TRAINING_STEPS):
        _, l = sess.run([train_op,loss])
        if i % 100 == 0:
            print('train step:' + str(i) + ", loss:" +str(l))

def run_eval(sess,test_X,test_Y):
    print('start eval')
    ds = tf.data.Dataset.from_tensor_slices((test_X,test_Y))
    ds = ds.batch(1)
    X,Y = ds.make_one_shot_iterator().get_next()
    X = tf.expand_dims(X,axis=2)
    Y = tf.expand_dims(Y,axis=1)
    with tf.variable_scope('model',reuse=True):
        prediction,_,_ = lstm_model(X,[0.0],False)
    predictions = []
    labels = []
    for i in range(TESTING_EXAMPLES):
        P,L = sess.run([prediction,Y])
        predictions.append(P)
        labels.append(L)
    predictions = np.array(predictions).squeeze()
    labels = np.array(labels).squeeze()
    rmse = np.sqrt(((predictions-labels)**2).mean(axis=0))
    print('Mean Square Error is: %f'% rmse)

    plt.figure()
    plt.plot(predictions,label='predictions')
    plt.plot(labels,label = 'real_sin')
    plt.legend()
    plt.show()

test_start = (TESTING_EXAMPLES+TIMESTEPS) * SAMPLE_GAP
test_end = test_start + (TESTING_EXAMPLES+TIMESTEPS) * SAMPLE_GAP
train_X, train_Y = generate_data(np.sin(np.linspace(0,test_start,TRAINING_STEPS+TIMESTEPS,dtype=np.float32)))
test_X,test_Y = generate_data(np.sin(np.linspace(test_start,test_end,TESTING_EXAMPLES+TIMESTEPS,dtype=np.float32)))

with tf.Session() as sess:
    train(sess,train_X,train_Y)
    run_eval(sess,test_X,test_Y)

'''
start training
load model
get predictions
start opt
start initializer
train step:0, loss:0.185513
train step:100, loss:0.00154637
train step:200, loss:0.000674907
train step:300, loss:0.000369885
train step:400, loss:0.000176506
train step:500, loss:0.000405856
train step:600, loss:0.000148857
train step:700, loss:0.000147915
train step:800, loss:0.000330028
train step:900, loss:0.00017602
train step:1000, loss:0.000111503
train step:1100, loss:0.000399117
train step:1200, loss:0.000182472
train step:1300, loss:0.000353213
train step:1400, loss:0.000293578
train step:1500, loss:0.000148629
train step:1600, loss:5.75956e-05
train step:1700, loss:0.00154916
train step:1800, loss:8.46601e-05
train step:1900, loss:6.13297e-05
train step:2000, loss:0.000141122
train step:2100, loss:0.00010441
train step:2200, loss:5.33387e-05
train step:2300, loss:0.000171484
train step:2400, loss:9.26147e-05
train step:2500, loss:3.65687e-05
train step:2600, loss:0.000103446
train step:2700, loss:4.82868e-05
train step:2800, loss:3.58153e-05
train step:2900, loss:1.79731e-05
train step:3000, loss:2.28823e-05
train step:3100, loss:5.06626e-05
train step:3200, loss:2.70808e-05
train step:3300, loss:7.32284e-05
train step:3400, loss:4.31858e-05
train step:3500, loss:4.22013e-05
train step:3600, loss:8.48996e-05
train step:3700, loss:4.91826e-05
train step:3800, loss:0.00170027
train step:3900, loss:0.000926301
train step:4000, loss:6.00364e-05
train step:4100, loss:3.65914e-05
train step:4200, loss:0.000148781
train step:4300, loss:3.73674e-05
train step:4400, loss:2.47654e-05
train step:4500, loss:2.06553e-05
train step:4600, loss:1.7806e-05
train step:4700, loss:9.61706e-06
train step:4800, loss:3.406e-05
train step:4900, loss:1.45551e-05
train step:5000, loss:5.3717e-06
train step:5100, loss:9.09046e-06
train step:5200, loss:1.53424e-05
train step:5300, loss:1.31456e-05
train step:5400, loss:3.54437e-06
train step:5500, loss:1.82684e-05
train step:5600, loss:1.67606e-05
train step:5700, loss:8.02673e-06
train step:5800, loss:1.85304e-05
train step:5900, loss:1.31649e-05
train step:6000, loss:2.03883e-05
train step:6100, loss:2.66873e-05
train step:6200, loss:1.3216e-05
train step:6300, loss:2.27932e-05
train step:6400, loss:0.000473492
train step:6500, loss:3.72205e-05
train step:6600, loss:5.09785e-05
train step:6700, loss:1.34629e-05
train step:6800, loss:1.62583e-05
train step:6900, loss:4.78306e-06
train step:7000, loss:6.65108e-06
train step:7100, loss:1.09091e-06
train step:7200, loss:7.09125e-06
train step:7300, loss:3.03532e-06
train step:7400, loss:7.27224e-07
train step:7500, loss:6.92976e-06
train step:7600, loss:1.03977e-06
train step:7700, loss:4.32182e-06
train step:7800, loss:1.82465e-05
train step:7900, loss:4.04126e-06
train step:8000, loss:3.22635e-06
train step:8100, loss:1.1027e-05
train step:8200, loss:7.95563e-06
train step:8300, loss:5.7349e-06
train step:8400, loss:1.37268e-05
train step:8500, loss:9.72122e-06
train step:8600, loss:8.64096e-06
train step:8700, loss:1.08009e-05
train step:8800, loss:0.000105467
train step:8900, loss:0.000228173
train step:9000, loss:8.84291e-06
train step:9100, loss:2.86701e-05
train step:9200, loss:4.04763e-05
train step:9300, loss:7.29185e-06
train step:9400, loss:6.88334e-06
train step:9500, loss:2.23952e-06
train step:9600, loss:1.56085e-06
train step:9700, loss:7.58298e-06
train step:9800, loss:1.87605e-06
train step:9900, loss:2.38302e-06
start eval
get predictions
Mean Square Error is: 0.033945
'''

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-07-07 11:42:59  更:2021-07-07 11:43:25 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/28 11:58:45-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码