IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> tensorflow识别水果 -> 正文阅读

[人工智能]tensorflow识别水果

问题
有一组水果的训练集,我们对模型进行训练,思路跟之前我们识别猫与狗一样。
设计解决这个问题的思路
1、下载与放置训练图片
2、现在对应的依赖,tensorflow、numpy等等
3、构建训练集合
4、建模
5、对模型进行训练
6、用测试模型进行验证
7、输出结果
8、优化模型 to step4
[1] 图片地址
https://www.kaggle.com/moltean/fruits?现在数据,现在速度比较慢,可以使用网盘。
网盘地址(提取码:a9wr)
【2】处理训练集的数据结构
import os
import pandas as pd

train_dir = './Training/'
test_dir = './Test/'

fruits = []
fruits_image = []

for i in os.listdir(train_dir):
?? ?for image_filename in os.listdir(train_dir + i):
?? ??? ?fruits.append(i) # name of the fruit
?? ??? ?fruits_image.append(i + '/' + image_filename)

train_fruits = pd.DataFrame(fruits, columns=["Fruits"])
train_fruits["Fruits Image"] = fruits_image

print(train_fruits)
结果输出
???????????Fruits??????????????Fruits Image
0????????Tomato 4????Tomato 4/r_236_100.jpg
1????????Tomato 4??????Tomato 4/247_100.jpg
2????????Tomato 4??????Tomato 4/257_100.jpg
3????????Tomato 4?????Tomato 4/r_78_100.jpg
4????????Tomato 4?????Tomato 4/r_68_100.jpg
...???????????...???????????????????????...
67687??Peach Flat????Peach Flat/220_100.jpg
67688??Peach Flat??Peach Flat/r_127_100.jpg
67689??Peach Flat????Peach Flat/156_100.jpg
67690??Peach Flat??Peach Flat/r_137_100.jpg
67691??Peach Flat????Peach Flat/146_100.jpg
【3】构造模型
import matplotlib.pyplot as plt
import seaborn as sns
from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
from glob import glob
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Dense

img = load_img(train_dir + "Cantaloupe 1/r_234_100.jpg")
plt.imshow(img)
plt.axis("off")
plt.show()

array_image = img_to_array(img)

# shape (100,100)
print("Image Shape --> ", array_image.shape)

# 131个类目
fruitCountUnique = glob(train_dir + '/*' )
numberOfClass = len(fruitCountUnique)
print("How many different fruits are there --> ",numberOfClass)

# 构建模型
model = Sequential()
model.add(Conv2D(32,(3,3),input_shape = array_image.shape))
model.add(Activation("relu"))
model.add(MaxPooling2D())

model.add(Conv2D(32,(3,3)))
model.add(Activation("relu"))
model.add(MaxPooling2D())

model.add(Conv2D(64,(3,3)))
model.add(Activation("relu"))
model.add(MaxPooling2D())

model.add(Flatten())
model.add(Dense(1024))
model.add(Activation("relu"))
model.add(Dropout(0.5))

# 区分131类
model.add(Dense(numberOfClass)) # output
model.add(Activation("softmax"))

model.compile(loss = "categorical_crossentropy",
?? ??? ??? ???optimizer = "rmsprop",
?? ??? ??? ???metrics = ["accuracy"])

print("Target Size --> ", array_image.shape[:2])

【4】训练模型
train_datagen = ImageDataGenerator(rescale= 1./255,
?? ??? ??? ??? ??? ??? ??? ??? ??? shear_range = 0.3,
?? ??? ??? ??? ??? ??? ??? ??? ?? ?horizontal_flip=True,
?? ??? ??? ??? ??? ??? ??? ??? ?? ?zoom_range = 0.3)
test_datagen = ImageDataGenerator(rescale= 1./255)



epochs = 100
batch_size = 32
train_generator = train_datagen.flow_from_directory(
?? ??? ??? ??? ?train_dir,
?? ??? ??? ??? ?target_size= array_image.shape[:2],
?? ??? ??? ??? ?batch_size = batch_size,
?? ??? ??? ??? ?color_mode= "rgb",
?? ??? ??? ??? ?class_mode= "categorical")

test_generator = test_datagen.flow_from_directory(
?? ??? ??? ??? ?test_dir,
?? ??? ??? ??? ?target_size= array_image.shape[:2],
?? ??? ??? ??? ?batch_size = batch_size,
?? ??? ??? ??? ?color_mode= "rgb",
?? ??? ??? ??? ?class_mode= "categorical")

for data_batch, labels_batch in train_generator:
?? ?print("data_batch shape --> ",data_batch.shape)
?? ?print("labels_batch shape --> ",labels_batch.shape)
?? ?break


hist = model.fit_generator(
?? ??? ?generator = train_generator,
?? ??? ?steps_per_epoch = 1600 // batch_size,
?? ??? ?epochs=epochs,
?? ??? ?validation_data = test_generator,
?? ??? ?validation_steps = 800 // batch_size)

#保存模型?model_fruits.h5
model.save('model_fruits.h5')

【5】展示训练结果
#展示损失模型结果
plt.figure()
plt.plot(hist.history["loss"],label = "Train Loss", color = "black")
plt.plot(hist.history["val_loss"],label = "Validation Loss", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
plt.title("Model Loss", color = "darkred", size = 13)
plt.legend()
plt.show()

#展示精确模型结果
plt.figure()
plt.plot(hist.history["accuracy"],label = "Train Accuracy", color = "black")
plt.plot(hist.history["val_accuracy"],label = "Validation Accuracy", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
plt.title("Model Accuracy", color = "darkred", size = 13)
plt.legend()
plt.show()

验证
新建一个文件,用于验证训练出来的模型
from tensorflow.keras.models import load_model
import os
import pandas as pd
from keras.preprocessing.image import ImageDataGenerator,img_to_array, load_img
import cv2,matplotlib.pyplot as plt,numpy as np
from keras.preprocessing import image

train_datagen = ImageDataGenerator(rescale= 1./255,
?? ??? ??? ??? ??? ??? ??? ??? ??? ?shear_range = 0.3,
?? ??? ??? ??? ??? ??? ??? ??? ??? ?horizontal_flip=True,
?? ??? ??? ??? ??? ??? ??? ??? ??? ?zoom_range = 0.3)

model = load_model('model_fruits.h5')
batch_size = 32
img = load_img("./Test/Apricot/3_100.jpg",target_size=(100,100))
plt.imshow(img)
plt.show()
array_image = img_to_array(img)
array_image = array_image * 1./255
x = np.expand_dims(array_image, axis=0)
images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
print(classes)

train_dir = './Training/'
train_generator = train_datagen.flow_from_directory(
?? ??? ?train_dir,
?? ??? ?target_size= array_image.shape[:2],
?? ??? ?batch_size = batch_size,
?? ??? ?color_mode= "rgb",
?? ??? ?class_mode= "categorical”)

print(train_generator.class_indices)

输出结果

[13]
Found 67692 images belonging to 131 classes.
{'Apple Braeburn': 0, 'Apple Crimson Snow': 1, 'Apple Golden 1': 2, 'Apple Golden 2': 3, 'Apple Golden 3': 4, 'Apple Granny Smith': 5, 'Apple Pink Lady': 6, 'Apple Red 1': 7, 'Apple Red 2': 8, 'Apple Red 3': 9, 'Apple Red Delicious': 10, 'Apple Red Yellow 1': 11, 'Apple Red Yellow 2': 12, 'Apricot': 13, 'Avocado': 14, 'Avocado ripe': 15, 'Banana': 16, 'Banana Lady Finger': 17, 'Banana Red': 18, 'Beetroot': 19, 'Blueberry': 20, 'Cactus fruit': 21, 'Cantaloupe 1': 22, 'Cantaloupe 2': 23, 'Carambula': 24, 'Cauliflower': 25, 'Cherry 1': 26, 'Cherry 2': 27, 'Cherry Rainier': 28, 'Cherry Wax Black': 29, 'Cherry Wax Red': 30, 'Cherry Wax Yellow': 31, 'Chestnut': 32, 'Clementine': 33, 'Cocos': 34, 'Corn': 35, 'Corn Husk': 36, 'Cucumber Ripe': 37, 'Cucumber Ripe 2': 38, 'Dates': 39, 'Eggplant': 40, 'Fig': 41, 'Ginger Root': 42, 'Granadilla': 43, 'Grape Blue': 44, 'Grape Pink': 45, 'Grape White': 46, 'Grape White 2': 47, 'Grape White 3': 48, 'Grape White 4': 49, 'Grapefruit Pink': 50, 'Grapefruit White': 51, 'Guava': 52, 'Hazelnut': 53, 'Huckleberry': 54, 'Kaki': 55, 'Kiwi': 56, 'Kohlrabi': 57, 'Kumquats': 58, 'Lemon': 59, 'Lemon Meyer': 60, 'Limes': 61, 'Lychee': 62, 'Mandarine': 63, 'Mango': 64, 'Mango Red': 65, 'Mangostan': 66, 'Maracuja': 67, 'Melon Piel de Sapo': 68, 'Mulberry': 69, 'Nectarine': 70, 'Nectarine Flat': 71, 'Nut Forest': 72, 'Nut Pecan': 73, 'Onion Red': 74, 'Onion Red Peeled': 75, 'Onion White': 76, 'Orange': 77, 'Papaya': 78, 'Passion Fruit': 79, 'Peach': 80, 'Peach 2': 81, 'Peach Flat': 82, 'Pear': 83, 'Pear 2': 84, 'Pear Abate': 85, 'Pear Forelle': 86, 'Pear Kaiser': 87, 'Pear Monster': 88, 'Pear Red': 89, 'Pear Stone': 90, 'Pear Williams': 91, 'Pepino': 92, 'Pepper Green': 93, 'Pepper Orange': 94, 'Pepper Red': 95, 'Pepper Yellow': 96, 'Physalis': 97, 'Physalis with Husk': 98, 'Pineapple': 99, 'Pineapple Mini': 100, 'Pitahaya Red': 101, 'Plum': 102, 'Plum 2': 103, 'Plum 3': 104, 'Pomegranate': 105, 'Pomelo Sweetie': 106, 'Potato Red': 107, 'Potato Red Washed': 108, 'Potato Sweet': 109, 'Potato White': 110, 'Quince': 111, 'Rambutan': 112, 'Raspberry': 113, 'Redcurrant': 114, 'Salak': 115, 'Strawberry': 116, 'Strawberry Wedge': 117, 'Tamarillo': 118, 'Tangelo': 119, 'Tomato 1': 120, 'Tomato 2': 121, 'Tomato 3': 122, 'Tomato 4': 123, 'Tomato Cherry Red': 124, 'Tomato Heart': 125, 'Tomato Maroon': 126, 'Tomato Yellow': 127, 'Tomato not Ripened': 128, 'Walnut': 129, 'Watermelon': 130}
识别出是13:Apricot

进一步验证


fig = plt.figure(figsize=(16, 16))
axes = []
files = []
predictions = []
true_labels = []
rows = 5
cols = 2

# 随机选择几个图片
def getRandomImage(path, img_width, img_height):
?? ?"""function loads a random image from a random folder in our test path"""
?? ?folders = list(filter(lambda x: os.path.isdir(os.path.join(path, x)), os.listdir(path)))
?? ?random_directory = np.random.randint(0, len(folders))
?? ?path_class = folders[random_directory]
?? ?file_path = os.path.join(path, path_class)
?? ?file_names = [f for f in os.listdir(file_path) if os.path.isfile(os.path.join(file_path, f))]
?? ?random_file_index = np.random.randint(0, len(file_names))
?? ?image_name = file_names[random_file_index]
?? ?final_path = os.path.join(file_path, image_name)
?? ?return image.load_img(final_path, target_size = (img_width, img_height)), final_path, path_class



def draw_test(name, pred, im, true_label):
?? ?BLACK = [0, 0, 0]
?? ?expanded_image = cv2.copyMakeBorder(im, 160, 0, 0, 300, cv2.BORDER_CONSTANT, value=BLACK)
?? ?cv2.putText(expanded_image, "predicted: " + pred, (20, 60), cv2.FONT_HERSHEY_SIMPLEX,
?? ??? ?0.85, (255, 0, 0), 2)
?? ?cv2.putText(expanded_image, "true: " + true_label, (20, 120), cv2.FONT_HERSHEY_SIMPLEX,
?? ??? ?0.85, (0, 255, 0), 2)

?? ?return expanded_image

IMG_ROWS, IMG_COLS = 100, 100

# predicting images
for i in range(0, 10):
?? ?path = "./Test"
?? ?img, final_path, true_label = getRandomImage(path, IMG_ROWS, IMG_COLS)
?? ?files.append(final_path)
?? ?true_labels.append(true_label)
?? ?x = image.img_to_array(img)
?? ?x = x * 1./255
?? ?x = np.expand_dims(x, axis=0)
?? ?images = np.vstack([x])
?? ?classes = model.predict_classes(images, batch_size=10)
?? ?predictions.append(classes)

class_labels = train_generator.class_indices
class_labels = {v: k for k, v in class_labels.items()}
class_list = list(class_labels.values())

for i in range(0, len(files)):
?? ?image = cv2.imread(files[i])
?? ?image = draw_test("Prediction", class_labels[predictions[i][0]], image, true_labels[i])
?? ?axes.append(fig.add_subplot(rows, cols, i+1))
?? ?plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
?? ?plt.grid(False)
?? ?plt.axis('off')
plt.show()
呈现结果
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-07-07 11:42:59  更:2021-07-07 11:44:40 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/17 20:29:32-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码