IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 自然语言处理(NLP)-文本处理-文本表示方法发展:词袋模型【tf-idf】 -> 主题模型【LDA】 -> 基于词向量的固定表征【word2vec】 -> 基于词向量的动态表征【Bert】 -> 正文阅读

[人工智能]自然语言处理(NLP)-文本处理-文本表示方法发展:词袋模型【tf-idf】 -> 主题模型【LDA】 -> 基于词向量的固定表征【word2vec】 -> 基于词向量的动态表征【Bert】

一、词袋模型(Bag-Of-Words)

1、One-Hot

2、tf-idf

在这里插入图片描述

二、主题模型

1、LSA(SVD)

在这里插入图片描述

2、pLSA

3、LDA

三、基于词向量的固定表征

1、word2vec

2、fastText

3、glove

官方glove: https://github.com/stanfordnlp/GloVe,C实现

Python 实现: https://github.com/maciejkula/glove-python

安装
pip install glove_python

在这里插入图片描述

四、基于词向量的动态表征

特征提取器:

  • elmo采用LSTM进行提取;
  • GPT和bert则采用Transformer进行提取;
  • 很多任务表明Transformer特征提取能力强于LSTM,elmo采用1层静态向量+2层LSTM,多层提取能力有限,而GPT和bert中的Transformer可采用多层,并行计算能力强

单/双向语言模型:

  • GPT采用单向语言模型,ELMo和BERT采用双向语言模型
  • GPT和BERT都采用Transformer,Transformer是Encoder-Decoder结构,GPT的单向语言模型采用Decoder结构,Decoder的部分见到的都是不完整的句子;BERT的双向语言模型则采用Encoder部分,能够看到完整句子

1、elmo

2、GPT

3、Bert

五、各种词向量的特点

  • One-hot
    • 维度灾难、语义鸿沟
  • 矩阵分解 (LSA)
    • 利用全局语料特征,但SVD求解计算复杂度大;
  • 分布式表示 (distributed representation)
    • 基于分布式假设 – 相同上下文语境的词有似含义
    • 基于NNLM/RNNLM的词向量:词向量为副产物,存在效率不高等问题;
    • word2vec、fastText:优化效率高,但是基于局部语料;
    • glove:基于全局预料,结合了LSA和word2vec的优点;
    • elmo、GPT、bert:动态特征,可以解决一词多义的问题。
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-07-09 17:32:00  更:2021-07-09 17:32:44 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/28 11:58:38-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码