IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 山东大学暑期实训第六次记载(第二周第三次) -> 正文阅读

[人工智能]山东大学暑期实训第六次记载(第二周第三次)

? ? ?? 7月9号-10号,对于图像分割方面的最终效果感觉有些不太理想,因此我试试用U-NET神经网络处理图像分割问题。

目录

一.根据视频复现代码:

?二.在实验平台上运行:

三.最终结果:

四.总结


参考论文:U-Net: Convolutional Networks for Biomedical Image Segmentation

参考知乎:https://zhuanlan.zhihu.com/p/43927696

? ? ?? U-Net是比较早的使用全卷积网络进行语义分割的算法之一,论文中使用包含压缩路径和扩展路径的对称U形结构在当时非常具有创新性,且一定程度上影响了后面若干个分割网络的设计,该网络的名字也是取自其U形形状。U-Net的实验是一个比较简单的ISBI cell tracking数据集,由于本身的任务比较简单,U-Net紧紧通过30张图片并辅以数据扩充策略便达到非常低的错误率,拿了当届比赛的冠军。

结构:

参考视频:https://www.bilibili.com/video/BV1J64y1m7s1&from=search&seid=15515898182409249700

一.根据视频复现代码:

model.py:

import torch
import torch.nn as nn
import torchvision.transforms.functional as TF

class DoubleConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(DoubleConv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),

        )

    def forward(self, x):
        return self.conv(x)

class UNET(nn.Module):
    def __init__(
            self, in_channels=3, out_channels=1, features=[64, 128, 256,512],
    ):
        super(UNET, self).__init__()
        self.ups = nn.ModuleList()
        self.downs = nn.ModuleList()
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)

        #Down part of UNET
        for feature in features:
            self.downs.append(DoubleConv(in_channels, feature))
            in_channels = feature

        #Up part of UNET
        for feature in reversed(features):
            self.ups.append(
                nn.ConvTranspose2d(
                    feature*2, feature, kernel_size=2, stride=2,
                )
            )
            self.ups.append(DoubleConv(feature*2, feature))

        self.bottleneck = DoubleConv(features[-1], features[-1]*2)
        self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)


    def forward(self, x):
        skip_connections = []
        for down in self.downs:
            x = down(x)
            skip_connections.append(x)
            x = self.pool(x)

        x = self.bottleneck(x)
        skip_connections = skip_connections[::-1]

        for idx in range(0, len(self.ups), 2):
            x = self.ups[idx](x)
            skip_connection = skip_connections[idx//2]

            if x.shape != skip_connection.shape:
                x = TF.resize(x, size=skip_connection.shape[2:])

            concat_skip = torch.cat((skip_connection, x), dim=1)
            x = self.ups[idx+1](concat_skip)

        return self.final_conv(x)

def test():
    x = torch.randn((3, 1, 161,161))
    model = UNET(in_channels=1, out_channels=1)
    preds = model(x)
    print(preds.shape)
    print(x.shape)
    assert preds.shape == x.shape

if __name__ == "__main__":
    test()

dataset.py:

import os
from PIL import Image
from torch.utils.data import Dataset
import numpy as np

class CarvanaDataset(Dataset):
    def __init__(self, image_dir, mask_dir, transform=None):
        self.image_dir = image_dir
        self.mask_dir = mask_dir
        self.transform = transform
        self.images = os.listdir(image_dir)

    def __len__(self):
        return len(self.images)

    def __getitem__(self, index):
        img_path = os.path.join(self.image_dir, self.images[index])
        mask_path = os.path.join(self.mask_dir, self.images[index])
        image = np.array(Image.open(img_path).convert("RGB"))
        mask = np.array(Image.open(mask_path).convert("L"), dtype=np.float32)
        mask[mask == 255.0] = 1.0

        if self.transform is not None:
            augmentations = self.transform(image=image, mask=mask)
            image = augmentations["image"]
            mask = augmentations["mask"]

        return image, mask

train.py:

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import torch
import albumentations as A
from albumentations.pytorch import ToTensorV2
from tqdm import tqdm
import torch.nn as nn
import torch.optim as optim
from model import UNET
from utils import (
     load_checkpoint,
     save_checkpoint,
     get_loaders,
     check_accuracy,
     save_predictions_as_imgs,
)

#Hyperparameters etc.
LEARNING_RATE = 1e-4
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
BATCH_SIZE = 16
NUM_EPOCHS = 3
NUM_WORKERS = 2
IMAGE_HEIGHT = 160
IMAGE_WIDTH = 240
PIN_MEMORY = True
LOAD_MODEL = True
TRAIN_IMG_DIR = "data/train_images/"
TRAIN_MASK_DIR = "data/train_masks/"
VAL_IMG_DIR = "data/val_images/"
VAL_MASK_DIR = "data/val_masks/"

def train_fn(loader, model, optimizer, loss_fn, scaler):
    loop = tqdm(loader)

    for batch_idx, (data,targets) in enumerate(loop):
        data = data.to(device=DEVICE)
        targets = targets.float().unsqueeze(1).to(device=DEVICE)

        #forward
        with torch.cuda.amp.autocast():
            predictions = model(data)
            loss = loss_fn(predictions, targets)

        #backward
        optimizer.zero_grad()
        scaler.scale(loss).backward()
        scaler.step(optimizer)
        scaler.update()

        #update tqdm loop
        loop.set_postfix(loss=loss.item())

def main():
    train_transform = A.Compose(
        [
            A.Resize(height=IMAGE_HEIGHT, width=IMAGE_WIDTH),
            A.Rotate(limit=35, p=1.0),
            A.HorizontalFlip(p=0.5),
            A.VerticalFlip(p=0.1),
            A.Normalize(
                mean=[0.0, 0.0, 0.0],
                std=[1.0, 1.0, 1.0],
                max_pixel_value=255.0,
            ),
            ToTensorV2(),
        ],
    )

    val_transforms = A.Compose(
        [
            A.Resize(height=IMAGE_HEIGHT, width=IMAGE_WIDTH),
            A.Normalize(
                mean=[0.0, 0.0, 0.0],
                std=[1.0, 1.0, 1.0],
                max_pixel_value=255.0,
            ),
            ToTensorV2(),
        ],
    )

    model = UNET(in_channels=3, out_channels=1).to(DEVICE)
    loss_fn = nn.BCEWithLogitsLoss()
    optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)

    train_loader, val_loader = get_loaders(
        TRAIN_IMG_DIR,
        TRAIN_MASK_DIR,
        VAL_IMG_DIR,
        VAL_MASK_DIR,
        BATCH_SIZE,
        train_transform,
        val_transforms,
        NUM_WORKERS,
        PIN_MEMORY,
    )

    '''
       先训练,训练好后进行更改,直接加载模型.
    '''
    if LOAD_MODEL:
        load_checkpoint(torch.load("my_checkpoint.pth.tar"), model)
    check_accuracy(val_loader, model, device=DEVICE)


    scaler = torch.cuda.amp.GradScaler()

    for epoch in range(NUM_EPOCHS):
        train_fn(train_loader, model, optimizer, loss_fn, scaler)

        #save model
        checkpoint = {
            "state_dict": model.state_dict(),
            "optimizer": optimizer.state_dict()
        }
        save_checkpoint(checkpoint)

        #check accuracy
        check_accuracy(val_loader, model, device=DEVICE)

        #print some example to a folder
        save_predictions_as_imgs(
            val_loader, model, folder="saved_images/", device=DEVICE
        )





if __name__ == "__main__":
    main()

?utils.py:

import torch
import torchvision
from dataset import CarvanaDataset
from torch.utils.data import DataLoader

def save_checkpoint(state, filename="my_checkpoint.pth.tar"):
    print("=> Saving checkpoint")
    torch.save(state, filename)

def load_checkpoint(checkpoint, model):
    print("=> Loading checkpoint")
    model.load_state_dict(checkpoint["state_dict"])

def get_loaders(
        train_dir,
        train_maskdir,
        val_dir,
        val_maskdir,
        batch_size,
        train_transform,
        val_transform,
        num_workers=4,
        pin_memory=True,
):
    train_ds = CarvanaDataset(
        image_dir=train_dir,
        mask_dir=train_maskdir,
        transform=train_transform,
    )
    train_loader = DataLoader(
        train_ds,
        batch_size=batch_size,
        num_workers=num_workers,
        pin_memory=pin_memory,
        shuffle=True,
    )
    val_ds = CarvanaDataset(
        image_dir=val_dir,
        mask_dir=val_maskdir,
        transform=val_transform,
    )
    val_loader = DataLoader(
        val_ds,
        batch_size=batch_size,
        num_workers=num_workers,
        pin_memory=pin_memory,
        shuffle=False,
    )

    return train_loader, val_loader

def check_accuracy(loader, model, device="cuda"):
    num_correct = 0
    num_pixels = 0
    dice_score = 0
    model.eval()

    with torch.no_grad():
        for x, y in loader:
            x = x.to(device)
            y = y.to(device).unsqueeze(1)
            preds = torch.sigmoid(model(x))
            preds = (preds > 0.5).float()
            num_correct += (preds == y).sum()
            num_pixels += torch.numel(preds)
            dice_score += (2*(preds*y).sum()) / (
                (preds + y).sum() + 1e-8
            )

    print(
        f"Got {num_correct}/{num_pixels} with acc {num_correct/num_pixels*100:.2f}"
    )
    print(f"Dice score: {dice_score/len(loader)}")
    model.train()

def save_predictions_as_imgs(
        loader, model, folder="saved_images/", device="cuda"
):
    model.eval()
    for idx,(x,y)in enumerate(loader):
        x = x.to(device=device)
        with torch.no_grad():
            preds = torch.sigmoid(model(x))
            preds = (preds > 0.5).float()
        torchvision.utils.save_image(
            preds, f"{folder}/pred_{idx}.png"
        )
        torchvision.utils.save_image(y.unsqueeze(1), f"{folder}{idx}.png")

    model.train()

数据集:

图片要求尺寸240X160,使用如下代码进行转换:

#提取目录下所有图片,更改尺寸后保存到另一目录
from PIL import Image
import os.path
import glob
def convertpng(pngfile,outdir,width=240,height=160):
    img=Image.open(pngfile)
    try:
        new_img=img.resize((width,height),Image.BILINEAR)
        new_img.save(os.path.join(outdir,os.path.basename(pngfile)))
    except Exception as e:
        print(e)
for pngfile in glob.glob("D:\\AllPycharmProjects\\ImageRes\\data\\val_images\\*.png"):
    convertpng(pngfile,"D:\\AllPycharmProjects\\ImageRes\\3")

?训练集63张图片(可用数据实在有限):

?

?二.在实验平台上运行:

输入:

python train.py

运行时报错:

python3错误:使用python3执行.py文件遇到:*ImportError: /lib64/libstdc++.so.6: version `CXXABI_1.3.9' not found

参考:https://blog.csdn.net/hq86937375/article/details/79689799解决了问题。

运行正常:

三.最终结果:

(1)预期pred结果(这个预期结果其实不太好,不是理想情况,而是我们目前能得到的最好效果的图片):

?实际pred结果:

(2)加载训练好的模型后查看acc:

四.总结

? ? ?? 整体上看,该方法得到的结果不好,但是主要原因我认为是我们的数据量太少,我能用来训练模型的图片只有63张,用来validation的图片只有16张,这用来机器学习远远不够!而B站视频中作者用了上百张图片进行训练,得到的效果很好,所以我认为数据量太少是主要原因!

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-07-11 16:38:36  更:2021-07-11 16:40:10 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/22 11:02:49-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码