| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 芯片TOPS的真实性 - 解释 ( 标量 矢量 张量) -> 正文阅读 |
|
[人工智能]芯片TOPS的真实性 - 解释 ( 标量 矢量 张量) |
宣传的TOPS往往都是运算单元的理论值,而非整个硬件系统的真实值。真实值更多取决于内部的SRAM、外部DRAM、指令集和模型优化程度。最糟糕的情况下,真实值是理论值的1/10算力甚至更低,一般也就50%的使用率。 理论值取决于运算精度、MAC的数量和运行频率。可大致简化为INT8精度下的MAC数量在FP16精度下等于减少了一半。FP32再减少一半,依次类推。 假设有512个MAC运算单元,运行频率为1GHz, INT8的数据结构和精度,算力为512 x 2 x 1 GHz = 1000 Billion Operations/Second = 1 TOPS FP16精度那么就是0.5TOPS, FP32精度就是0.25TOPS。 英伟达的Tesla V100有640个Tensor核,每核有64个MAC运算单元,运行频率大约1.480GHz,那么INT8下算力为640 * 64 * 2 * 1.480 GHz=121TOPS。 #?深度学习计算设备存在两个瓶颈,一个是处理器计算能力,另一个是计算带宽。动态的来看,不考虑使用的算法,内存和算力无法很好的匹配 分析哪一个限制了计算性能可以使用 Roofline 模型-计算性能(纵轴)和算法的运算强度(横轴)。 例如 ResNet-50需要MAC大约为每秒70亿次运算,英伟达TeslaT4运行ResNet-50每秒可处理3920张224*224的图像,3920 images/second x 7 BillionOperations/image = 27,440 Billion Operations/second = 27.4 TrillionOperations/Second = 27.4 TOPS。而英伟达Tesla T4的理论算力是130TOPS。实际只有27.4TOPS。 决定算力真实值最主要因素是内存( SRAM和DRAM)带宽, 为何大部分人工智能算法公司都想定制或自制计算平台。算法的性能与硬件设计往往脱离不开。要提高利用率就需要软硬件一体设计。 ##? TOPS: Tera-Operations/second 标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量。 参考 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 | -2024/12/22 11:21:41- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |