IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 集成学习task1—数学基础(极值点的寻找) -> 正文阅读

[人工智能]集成学习task1—数学基础(极值点的寻找)

实验目的

1、理解等高线的几何含义、如何发现一个函数的最小解;
掌握一门绘制函数图形的编程工具;

实验内容

给定下述Rosenbrock函数,f(x)=(a-x1)*2+b(x2-x1*x1)**2。试编写程序完成下述工作:
1)为不同的a,b取值,绘制该函数的3D表面。请问 a,b取值对该表面形状有大的影响吗?,所谓大影响就是形状不再相似。对a,b的取值区间,能否大致给出一个分类,像下面这样给出一张表:

b=[b1,b2]b=[b3,b4]
a=[a1,a2]
a=[a3,a4]
# 用matplotlib模块的三维模块来绘制
import numpy as np
import matplotlib.pyplot as plt
import random
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()
ax = fig.gca(projection='3d')
# prepare data
x = np.arange(-100, 100, 0.5)
y = np.arange(-100, 100, 0.5)
x, y = np.meshgrid(x, y)
a=10000000000
b=10000000000
z = np.square(a-x) + b*np.square(y - x**2)
surf = ax.plot_surface(x, y, z, cmap='rainbow')

fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()

通过设置不同的:a和b的值来查看图形的变化情况
1:a=0,b=0
在这里插入图片描述
2:a=0,b=-1
在这里插入图片描述3:a=10,b=10
在这里插入图片描述4:a=-10,b=-10
在这里插入图片描述5:a=1,b=1000000000
在这里插入图片描述6:a=1000000000,b=1
在这里插入图片描述7:a=-100000000,b=1
在这里插入图片描述

对比可以发现
1:b的取值正负对图形起着反翻转的作用
2:a取值的正负对图形无太多影响
3:当a的取值为b的万倍级以上时候对图形起着拉伸的作用
4:b的倍数无太大关系,只与正负有关

2)编写一个算法来找到它的全局最小值及相应的最小解,并在3D图中标出。分析一下你的算法时空效率、给出运行时间。

牛顿法和梯度下降法的比较
 1.牛顿法:是通过求解目标函数的一阶导数为0时的参数,进而求出目标函数最小值时的参数。收敛速度很快。
海森矩阵的逆在迭代过程中不断减小,可以起到逐步减小步长的效果。

缺点:海森矩阵的逆计算复杂,代价比较大,因此有了拟牛顿法。
2.梯度下降法:是通过梯度方向和步长,直接求解目标函数的最小值时的参数。
越接近最优值时,步长应该不断减小,否则会在最优值附近来回震荡。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import time
%matplotlib inline
from mpl_toolkits.mplot3d import Axes3D
class Rosenbrock():
    def __init__(self):
        self.x1 = np.arange(-100, 100, 0.0001)
        self.x2 = np.arange(-100, 100, 0.0001)
        #self.x1, self.x2 = np.meshgrid(self.x1, self.x2)
        self.a = 1
        self.b = 1
        self.newton_times = 1000
        self.answers = []
        self.min_answer_z = []


    # 准备数据
    def data(self):
        z = np.square(self.a - self.x1) + self.b * np.square(self.x2 - np.square(self.x1))
        #print(z.shape)
        return z

    # 随机牛顿
    def snt(self,x1,x2,z,alpha):
        rand_init = np.random.randint(0,z.shape[0])
        x1_init,x2_init,z_init = x1[rand_init],x2[rand_init],z[rand_init]
        x_0 =np.array([x1_init,x2_init]).reshape((-1,1))
        #print(x_0)


        for i in range(self.newton_times):
            x_i = x_0 - np.matmul(np.linalg.inv(np.array([[12*x2_init**2-4*x2_init+2,-4*x1_init],[-4*x1_init,2]])),np.array([4*x1_init**3-4*x1_init*x2_init+2*x1_init-2,-2*x1_init**2+2*x2_init]).reshape((-1,1)))
            x_0 = x_i
            x1_init = x_0[0,0]
            x2_init = x_0[1,0]
        answer = x_0
        return answer


    # 绘图
    def plot_data(self,min_x1,min_x2,min_z):
        x1 = np.arange(-100, 100, 0.1)
        x2 = np.arange(-100, 100, 0.1)
        x1, x2 = np.meshgrid(x1, x2)
        a = 1
        b = 1
        z = np.square(a - x1) + b * np.square(x2 - np.square(x1))
        fig4 = plt.figure()
        ax4 = plt.axes(projection='3d')
        ax4.plot_surface(x1, x2, z, alpha=0.3, cmap='winter')  # 生成表面, alpha 用于控制透明度
        ax4.contour(x1, x2, z, zdir='z', offset=-3, cmap="rainbow")  # 生成z方向投影,投到x-y平面
        ax4.contour(x1, x2, z, zdir='x', offset=-6, cmap="rainbow")  # 生成x方向投影,投到y-z平面
        ax4.contour(x1, x2, z, zdir='y', offset=6, cmap="rainbow")  # 生成y方向投影,投到x-z平面
        ax4.contourf(x1, x2, z, zdir='y', offset=6, cmap="rainbow")  # 生成y方向投影填充,投到x-z平面,contourf()函数
        ax4.scatter(min_x1,min_x2,min_z,c='purple', s=50, marker='D')
        # 设定显示范围
        ax4.set_xlabel('X')
        ax4.set_ylabel('Y')
        ax4.set_zlabel('Z')
        plt.show()

    # 开始
    def start(self):
        times = int(input("请输入需要随机优化的次数:"))
        alpha = float(input("请输入随机优化的步长"))
        z = self.data()
        start_time = time.time()
        for i in range(times):
            answer = self.snt(self.x1,self.x2,z,alpha)
            self.answers.append(answer)
        min_answer = np.array(self.answers)
        for i in range(times):
            self.min_answer_z.append((1-min_answer[i,0,0])**2+(min_answer[i,1,0]-min_answer[i,0,0]**2)**2)
        optimal_z = np.min(np.array(self.min_answer_z))
        optimal_z_index = np.argmin(np.array(self.min_answer_z))
        optimal_x1,optimal_x2 = min_answer[optimal_z_index,0,0],min_answer[optimal_z_index,1,0]
        end_time = time.time()
        running_time = end_time-start_time
        print("优化的时间:%.2f秒!" % running_time)
        self.plot_data(optimal_x1,optimal_x2,optimal_z)
if __name__ == '__main__':
    snt = Rosenbrock()
    snt.start()

结果如下:
在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-07-14 10:51:52  更:2021-07-14 10:52:19 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/22 10:53:54-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码