项目实现了 Nature DQN、Double DQN、Dueling DQN
github 地址?https://github.com/xiaoxu1025/SpaceInvader/
Deep Q-Learning 也就是价值函数的近似表示
Nature DQN、Double DQN、Dueling DQN 都是在Deep? Q-Learning上的优化
下面是Deep Q-Learning的模型实现和 Dueling DQN模型的实现
def create_model(input_shape, action_nums):
input_state = Input(shape=input_shape)
input_action = Input(shape=(action_nums,))
conv1 = Conv2D(16, kernel_size=(7, 7), strides=(4, 4), activation='relu')(input_state)
conv2 = Conv2D(32, kernel_size=(5, 5), strides=(2, 2), activation='relu')(conv1)
conv3 = Conv2D(64, kernel_size=(3, 3), strides=(2, 2), activation='relu')(conv2)
flattened = Flatten()(conv3)
dense1 = Dense(512, kernel_initializer='glorot_uniform', activation='relu')(flattened)
dense2 = Dense(256, kernel_initializer='glorot_uniform', activation='relu')(dense1)
q_values = Dense(action_nums, kernel_initializer='glorot_uniform', activation='tanh')(dense2)
q_v = dot([q_values, input_action], axes=1)
model = Model(inputs=[input_state, input_action], outputs=q_v)
q_values_func = K.function([input_state], [q_values])
return model, q_values_func
def create_duelingDQN_model(input_shape, action_nums):
input_state = Input(shape=input_shape)
input_action = Input(shape=(action_nums,))
conv1 = Conv2D(16, kernel_size=(7, 7), strides=(4, 4), activation='relu')(input_state)
conv2 = Conv2D(32, kernel_size=(5, 5), strides=(2, 2), activation='relu')(conv1)
conv3 = Conv2D(64, kernel_size=(3, 3), strides=(2, 2), activation='relu')(conv2)
flattened = Flatten()(conv3)
dense1 = Dense(512, kernel_initializer='glorot_uniform', activation='relu')(flattened)
dense2 = Dense(256, kernel_initializer='glorot_uniform', activation='relu')(dense1)
V = Dense(1, kernel_initializer='glorot_uniform')(dense2)
A = Dense(action_nums, kernel_initializer='glorot_uniform', activation='tanh')(dense2)
q_values = DuelingLayer()(V, A)
q_v = dot([q_values, input_action], axes=1)
model = Model(inputs=[input_state, input_action], outputs=q_v)
q_values_func = K.function([input_state], [q_values])
return model, q_values_func
然后是Nature DQN的实现
states, actions, rewards, next_states, is_ends = self.memory.sample(self.batch_size)
states_normal, actions_normal, next_states_normal = self.preprocessor.get_batch_data(states, actions, next_states)
q_values = self.calc_target_q_values_func(next_states_normal)
max_q_values = np.max(q_values, axis=1)
new_rewards = rewards + self.gamma * max_q_values
y = np.where(is_ends, rewards, new_rewards)
y = np.expand_dims(y, axis=1)
loss = self.model.train_on_batch([states, actions_normal], y)
接下来 Double DQN的实现
# 1 先在当前Q网络中先找出最大Q值对应的动作
q_values = self.calc_q_values_func(next_states_normal)
q_values_actions = np.argmax(q_values, axis=1)
q_values_actions = to_categorical(q_values_actions, self.preprocessor.action_nums)
# 2 然后利用这个选择出来的动作在目标网络里面去计算目标Q值
target_q_values = self.target_model.predict_on_batch([next_states_normal, q_values_actions])
new_rewards = rewards + self.gamma * target_q_values
y = np.where(is_ends, rewards, new_rewards)
y = np.expand_dims(y, axis=1)
loss = self.model.train_on_batch([states, actions_normal], y)
|