今天和大家分享2019-2021年车道线检测领域含有开源代码的论文。
ArXiv2021
LaneAF: Robust Multi-Lane Detection with Affinity Fields
论文下载地址:https://arxiv.org/pdf/2103.12040.pdf 开源代码地址:https://github.com/sel118/LaneAF
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
论文下载地址:https://arxiv.org/pdf/2105.05003.pdf 开源代码地址:https://github.com/aliyun/conditional-lane-detection
CVPR2021
Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection
论文下载地址:https://arxiv.org/pdf/2010.12035.pdf 开源代码地址:https://github.com/lucastabelini/LaneATT
AAAI2021
RESA: Recurrent Feature-Shift Aggregator for Lane Detection
论文下载地址:https://arxiv.org/pdf/2008.13719.pdf 开源代码地址:https://github.com/ZJULearning/resa
IEEE Transactions on Intelligent Transportation Systems 2021
Key Points Estimation and Point Instance Segmentation Approach for Lane Detection
论文下载地址:https://arxiv.org/pdf/2002.06604.pdf 开源代码地址:https://github.com/koyeongmin/PINet_new
CVPR2020
Inter-Region Affinity Distillation for Road Marking Segmentation
论文下载地址:https://arxiv.org/pdf/2004.05304v1.pdf 开源代码地址:https://github.com/cardwing/Codes-for-IntRA-KD
ECCV2020
Ultra Fast Structure-aware Deep Lane Detection
论文下载地址:https://arxiv.org/pdf/2004.11757.pdf 开源代码地址:https://github.com/cfzd/Ultra-Fast-Lane-Detection
Gen-LaneNet: A Generalized and Scalable Approach for 3D Lane Detection
论文下载地址:https://arxiv.org/pdf/2003.10656.pdf 开源代码地址:https://github.com/yuliangguo/Pytorch_Generalized_3D_Lane_Detection
WACV2020
End-to-end Lane Shape Prediction with Transformers
论文下载地址:https://arxiv.org/pdf/2011.04233.pdf 开源代码地址:https://github.com/liuruijin17/LSTR
IV2020
Lane Detection in Low-light Conditions Using an Efficient Data Enhancement : Light Conditions Style Transfer
论文下载地址:https://arxiv.org/pdf/2002.01177.pdf 开源代码地址:https://github.com/Chenzhaowei13/Light-Condition-Style-Transfer
ICPR2020
PolyLaneNet: Lane Estimation via Deep Polynomial Regression
论文下载地址:https://arxiv.org/pdf/2004.10924.pdf 开源代码地址:https://github.com/lucastabelini/PolyLaneNet
ICCV2019
Learning Lightweight Lane Detection CNNs by Self Attention Distillation
论文下载地址:https://openaccess.thecvf.com/content_ICCV_2019/papers/Hou_Learning_Lightweight_Lane_Detection_CNNs_by_Self_Attention_Distillation_ICCV_2019_paper.pdf 开源代码地址:https://github.com/cardwing/Codes-for-Lane-Detection
End-to-end Lane Detection through Differentiable Least-Squares Fitting
论文下载地址:https://arxiv.org/pdf/1902.00293 开源代码地址:https://github.com/wvangansbeke/LaneDetection_End2End
如果你对计算机视觉领域的目标跟踪、检测、分割、轻量化神经网络感兴趣,欢迎关注公众号一起学习交流~
|