第三章模型建立和评估
输出图片设置 plt.rcParams[‘font.sans-serif’] = [‘SimHei’] # 用来正常显示中文标签 plt.rcParams[‘axes.unicode_minus’] = False # 用来正常显示负号 plt.rcParams[‘figure.figsize’] = (10, 6) # 设置输出图片大小
特征工程
1.缺失值填充 2.编码分类变量 onehot encoding
data = train[['Pclass','Sex','Age','SibSp','Parch','Fare', 'Embarked']]
data = pd.get_dummies(data)
模型搭建
sklearn模型算法选择路径图
对数据集进行切割 X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)
逻辑回归
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(X_train, y_train)
lr2 = LogisticRegression(C=100)
lr2.fit(X_train, y_train)
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr.score(X_test, y_test)))
随机森林
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)
rfc2 = RandomForestClassifier(n_estimators=100, max_depth=5)
rfc2.fit(X_train, y_train)
print("Training set score: {:.2f}".format(rfc.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc.score(X_test, y_test)))
输出模型预测结果
1.交叉验证
from sklearn.model_selection import cross_val_score
lr = LogisticRegression(C=100)
scores = cross_val_score(lr, X_train, y_train, cv=10)
scores
print("Average cross-validation score: {:.2f}".format(scores.mean()))
2.混淆矩阵
from sklearn.metrics import confusion_matrix
lr = LogisticRegression(C=100)
lr.fit(X_train, y_train)
pred = lr.predict(X_train)
confusion_matrix(y_train, pred)
3.绘制ROC曲线
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, lr.decision_function(X_test))
plt.plot(fpr, tpr, label="ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR (recall)")
close_zero = np.argmin(np.abs(thresholds))
plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10, label="threshold zero", fillstyle="none", c='k', mew=2)
plt.legend(loc=4)
|