Bagging
bootstraps抽样方式
集成学习
集成学习的主要思路是组合多个弱监督模型以期得到一个更好更全面的强监督模型,集成学习潜在的思想是即便某一个弱分类器得到了错误的预测,其他的弱分类器也可以将错误纠正回来。集成学习的几类包括:Bagging,Boosting以及Stacking。
Adaboost的基本原理
对于Adaboost来说,解决上述的两个问题的方式是:1. 提高那些被前一轮分类器错误分类的样本的权重,而降低那些被正确分类的样本的权重。这样一来,那些在上一轮分类器中没有得到正确分类的样本,由于其权重的增大而在后一轮的训练中“备受关注”。2. 各个弱分类器的组合是通过采取加权多数表决的方式,具体来说,加大分类错误率低的弱分类器的权重,因为这些分类器能更好地完成分类任务,而减小分类错误率较大的弱分类器的权重,使其在表决中起较小的作用。 对于Adaboost的算法原理的理解还需加深,总之,Adaboost的思路是增加模型复杂度而降低偏差的方式
前向分布算法
回看Adaboost的算法内容,我们需要通过计算M个基本分类器,每个分类器的错误率、样本权重以及模型权重。我们可以认为:Adaboost每次学习单一分类器以及单一分类器的参数(权重)。接下来,我们抽象出Adaboost算法的整体框架逻辑,构建集成学习的一个非常重要的框架----前向分步算法,有了这个框架,我们不仅可以解决分类问题,也可以解决回归问题。
作业
什么是bootstraps:
bootstraps的目的是提高抽样过程小样本准确率,Bootstrap又称自展法,是用小样本估计总体值的一种非参数方法,在进化和生态学研究中应用十分广泛。例如进化树分化节点的自展支持率等。 Bootstrap的思想,是生成一系列bootstrap伪样本,每个样本是初始数据有放回抽样。通过对伪样本的计算,获得统计量的分布。例如,要进行1000次bootstrap,求平均值的置信区间,可以对每个伪样本计算平均值。这样就获得了1000个平均值。对着1000个平均值的分位数进行计算, 即可获得置信区间。已经证明,在初始样本足够大的情况下,bootstrap抽样能够无偏得接近总体的分布。
什么是bagging:
bagging,该方法通常考虑的是同质弱学习器,相互独立地并行学习这些弱学习器,并按照某种确定性的平均过程将它们组合起来。独立性很重要,这是和其他几个方法的重要区别。
bootstraps和bagging的联系:
我觉得联系应该说bootstraps是bagging最常用的统计方法(想不出别的联系了)
|