IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 千万级类别人脸识别模型并行训练 -> 正文阅读

[人工智能]千万级类别人脸识别模型并行训练

并行训练的方式:

  • 1.nn.DataParallel数据并行。将一个batchsize中的数据分给多个GPU并行训练。
  • 2.模型并行。将FC层拆分给多个GPU进行并行训练。
  • 3.partial_fc。(抽样fc层)

一、模型并行

目前处理大规模(数据多、类别大)数据集的方法:

混合并行:即backbone使用数据并行,分类层使用模型并行;

该方法具备两个优点:

  • 1)缓解了 W 的存储压力。将W划分为k个子矩阵w;
  • 2)将 W 梯度的通信转换成了所有GPU的特征 X 与 softmax 局部分母的通信,大大降低了数据并行带来的通信开销。

模型并行的结构图:

模型并行方法的弊端:

模型并行的方式理论上看似能无限增加类别数(只要增加GPU数量即可),但是实际上大家在尝试更大规模、更多机器的时候,会发现显存不够用了,好像增加类别数的同时增加机器,单个GPU的显存还在增长?其实我们忽略了另外一个占据显存的张量:predicted logits的存储会受到总批大小的增加的影响。logits(预计日志的存储会受到总批大小的增加的影响)。

首先定义 logits = X_w,其中 w 为存储在每张GPU上的子矩阵,X 为经过集合通信 Allgaher 收集到的全局特征,d 为特征的维度大小,C 为总的类别数,k 为GPU的个数。其中每块GPU中 w 占用的显存为:

结论:当我们不停的增加GPU数量时,logits占用的内存也会增大,当GPU数量K大到一定量时,内存就会溢出了。

二、Partial FC(FC抽样)

该研究对此提出了一个简单的解决方案:

在实现混合并行时,不仅同步每张卡的特征,同时也同步每张卡的标签,这样每张卡都具备所有卡的完整特征和标签。假设总的批次大小为 kN,则至多会有 kN 个正类中心随机分布在所有的GPU中,让每个正类中心所属的GPU将该正类采样出来即可,每张GPU正类采出来后,再随机用负类补齐到约定的采样率。这样每张GPU采样到的类中心一样多,实现负载均衡。后续的过程就是分类层的模型并行部分了,需要注意的是,只有采样出来的类中心的权重和动量会更新。

partial_fc论文博客:

https://jishuin.proginn.com/p/763bfbd2fee4

https://blog.csdn.net/weixin_43152063/article/details/115307938

https://blog.51cto.com/u_15282017/2974039

https://blog.csdn.net/zengwubbb/article/details/109050165

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-07-23 10:47:03  更:2021-07-23 10:49:00 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/22 10:46:45-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码