Machine learning and Deep learning
Introduction
Machine learning
Looking for function

Different types of Functions

Structured Learning
create something with structure(image, document) in other word, learn how to create
How to find a function
1.Function with unknown Parameters

2.Define Loss from Training Data
Loss is a function of paras
Loss: how good a set of values is

If y and y-hat are both probability distributions -> Cross-entropy
3.Optimization
Gradient Descent

local minima

example

Example-> Linear Models

Linear models are too simple … we need more sophisticated modes.
1. Piecewise function

Linear models have severe limitation-> model bias
All piecewise linear curves = constant + sum of set of linear functions 
Beyond piecewise linear?

2. The bule lines - sigmoid

3. Different sigmoid

4. Representation


6. Vector representation
  
7. optimization
  
8. model optimize


9. fancy name
neuron and neural network

why don’t we go deeper? -> overfitting
注:
1. 本文内容出自台湾大学李宏毅老师教学视频及相关课件
2. 本文不可用做代替李宏毅老师课程视频的自学材料,因视频中许多细节并未出现在本文中。本文适用于已完成视频学习想要进行简单课后复习的情况
3. 本文内容为李宏毅老师课程视频前三节内容,后续内容会陆续更新
|