IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Pytorch深度学习实践 第十一讲 卷积神经网络(高级篇) -> 正文阅读

[人工智能]Pytorch深度学习实践 第十一讲 卷积神经网络(高级篇)

减少代码冗余:将某些重复调用的代码封装成类或函数。

GoogleNet

网络结构

有很多相同的Inception模块组成,就将此模块写成一个类,方便重复调用。

?Inception模块的结构

?关于为什么采用1×1的卷积核:通过采用1×1的卷积核计算量减少了10倍。

?

?示例代码:

import torch.nn as nn
import torch.nn.functional as F
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt
#构造数据集
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307, ),(0.3081, ))])
train_sets = datasets.MNIST(root='E:\MyCode\pytorchLearning', transform=transform, train=True, download=False)
test_sets = datasets.MNIST(root='E:\MyCode\pytorchLearning', transform=transform,train=False,download=False)
train_dataloader = DataLoader(dataset=train_sets, batch_size=batch_size, shuffle =True)
test_dataloader = DataLoader(dataset=test_sets, batch_size=batch_size, shuffle=False)

class InceptionA(nn.Module):
    def __init__(self,in_channels):
        super(InceptionA, self).__init__()
        #branch1
        self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
        #branch2
        self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        #branch3
        self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
        #branch4
        self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
    def forward(self,x):
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)

        outputs = [branch_pool, branch1x1, branch5x5, branch3x3]
        return torch.cat(outputs, dim=1)
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(88, 20, kernel_size=5)
        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)
        self.mp = nn.MaxPool2d(2)
        self.fc = nn.Linear(1408, 10)
    def forward(self, x):
        insize = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))
        x = self.incep1(x)
        x = F.relu(self.mp(self.conv2(x)))
        x = self.incep2(x)
        x = x.view(insize, -1)
        x = self.fc(x)
        return x
model = Net()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model.to(device)
#损失和优化
critirion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

def train(epoch):
    running_loss = 0.0
    for idx,(inputs,targets) in enumerate(train_dataloader,0):
        inputs = inputs.to(device)
        targets = targets.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = critirion(outputs,targets)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if idx % 300 == 299:
            print('[%d,%5d],loss:%.3f' % (epoch+1,idx+1,running_loss/2000))
            running_loss = 0.0
def test():
    accuracy_list = []
    correct = 0
    total = 0
    with torch.no_grad():
        for (inputs,targets) in test_dataloader:
            inputs,targets = inputs.to(device),targets.to(device)
            outputs = model(inputs)
            _,predicted = torch.max(outputs,dim=1)
            total += targets.size(0) #batch_size大小
            correct += (predicted==targets).sum().item()
    print("Accuracy on test set:%d %% [%d/%d]" % (100*correct/total, correct, total))
    accuracy = correct % total
    accuracy_list.append(accuracy)
    return accuracy_list

if __name__=="__main__":
    epoch_list=[]
    for epoch in range(4):
        epoch_list.append(epoch)
        train(epoch)
        accuracy_list = test()
    # plt.plot(epoch_list,accuracy_list)
    # plt.xlabel('epoch')
    # plt.ylabel('accuracy')
    # plt.show()

?class Net()的结构:

?Residual Net残差网络

目的:权重更新时w=w-αg,当g→0时,w基本不更新,即梯度消失问题,采用逐层训练的方式来解决梯度消失问题。

网络结构:

?示例代码:

import torch
import torch.nn.functional as F
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision import datasets


transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307, ),(0.3081, ))])
batch_size = 64
train_sets = datasets.MNIST(root='E:\image-dataset\MNIST', transform=transform, train=True, download=False)
test_sets = datasets.MNIST(root='E:\image-dataset\MNIST', transform=transform, train=False,download=False)
train_loader = DataLoader(dataset=train_sets, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_sets, batch_size=batch_size, shuffle=False)

class ResidualBlock(torch.nn.Module):
    def __init__(self,channels):
        super(ResidualBlock, self).__init__()
        self.channels = channels
        self.conv1 = torch.nn.Conv2d(channels, channels, kernel_size=3,padding=1)
        self.conv2 = torch.nn.Conv2d(channels, channels, kernel_size=3,padding=1)
    def forward(self,x):
        y = F.relu(self.conv1(x))
        y = self.conv2(y)
        y_ = y + x
        y_ = F.relu(y_)
        return y_
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 16, kernel_size=5)
        self.mp = torch.nn.MaxPool2d(2)
        self.conv2 = torch.nn.Conv2d(16, 32, kernel_size=5)
        self.fc = torch.nn.Linear(512, 10)
        self.residual1 = ResidualBlock(16)
        self.residual2 = ResidualBlock(32)
    def forward(self,x):
        in_size = x.size(0)
        x = self.mp(F.relu(self.conv1(x)))
        x = self.residual1(x)
        x = self.mp(F.relu(self.conv2(x)))
        x = self.residual2(x)
        x = x.view(in_size,-1)
        x = self.fc(x)
        return x
model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
print(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):
    running_loss = 0.0
    for idx,(inputs,targets) in enumerate(train_loader,0):
        inputs,targets = inputs.to(device),targets.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs,targets)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if idx % 300 ==299:
            print('%d %5d,loss:%.3f' % (epoch+1,idx+1,running_loss/2000))
            running_loss = 0.0
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for (input,target) in test_loader:
            input,target = input.to(device),target.to(device)
            output = model(input)
            _,predicted = torch.max(output,dim=1)
            correct += (predicted == target).sum().item()
            total += target.size(0)
        print("Accuracy of the test set is:%d %% [%d/%d]" % (100*correct/total,correct, total))
if __name__=='__main__':
    for epoch in range(5):
        train(epoch)
        test()

?

?

?

?

?

?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-07-24 11:26:17  更:2021-07-24 11:30:57 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/17 20:27:58-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码