IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> [BPnet识别MNIST02]MNIST字符集下载以及python读取 -> 正文阅读

[人工智能][BPnet识别MNIST02]MNIST字符集下载以及python读取

写在前面

做为我的第一个机器学习的练手项目,我选择了较为简单的MNIST手写字符集识别,因为MNIST在网上是开源的,但是我们需要将其处理成模型可使用的格式,因此这篇文章我就分享我的MNIST字符集下载以及数据集成过程

conda下载tensorflow

在pycharm的这个地方可以通过命令行下载tensorflow:

在这里插入图片描述
通过命令conda install tensorflow之后,可能会报下面这个错误:

Collecting package metadata (current_repodata.json): failed

ProxyError: Conda cannot proceed due to an error in your proxy configuration.
Check for typos and other configuration errors in any '.netrc' file in your home directory,
any environment variables ending in '_PROXY', and any other system-wide proxy
configuration settings.

关掉当前开的VPN软件即可解决这个错误

MNIST下载

言归正传,首先我们需要去MNIST的官网上下载手写字符集,地址在这里:
http://yann.lecun.com/exdb/mnist/
在这里插入图片描述
下载并且进行解压之后得到如下这些文件。

MNIST数据读取

在MNIST官网里下载下来的文件中由60k个数据的数据集(包含训练集和验证集),还有10k个数据的测试集,各个数据集分别由图片和标签组成,因此读取的时候我们需要分别进行读取:

def readFile(type=0):#0 is traindata,1 is testdata
    if (type == 0):
        with open('./dataSet/train-images.idx3-ubyte','rb') as ti:
            train_image = ti.read()
        with open('./dataSet/train-labels.idx1-ubyte', 'rb') as tl:
            train_labels = tl.read()
        return train_image,train_labels
    elif (type == 1):
        with open('./dataSet/t10k-images-idx3-ubyte', 'rb') as t_i:
            test_image = t_i.read()
        with open('./dataSet/t10k-labels-idx1-ubyte', 'rb') as t_l:
            test_labels = t_l.read()
        return test_image,test_labels

image, label = readFile()

我将数据读取都写在了一个函数中,由type参数区别读取的文件类型,读取出来的数据存储在image, label变量中,image变量中存储的是图像数值,MNIST字符集存储的手写字符集是28X28的大小,label变量存储的是图像对应的标签,也就是1~9

将图片和标签读取出来之后是所有数据都合在一起的,但是在训练的时候我们需要将数据单个取出并且与标签对应起来,而且我们需要在数据流里面的任意位置开始读取任意长度的数据,所以我写了下面的程序:


img_size_bit = struct.calcsize('>784B')
lab_size_bit = struct.calcsize('>1B')

def getImages(image,n,startidx=0):
    img = []
    index = struct.calcsize('>IIII') + img_size_bit * startidx
    for i in range(n):
        temp = struct.unpack_from('>784B', image, index)
        img.append(np.reshape(temp, (28, 28)))
        index += img_size_bit
    return img

def getLabels(label,n,startidx=0):
    lab = []
    index = struct.calcsize('>II') + lab_size_bit * startidx
    for i in range(n):
        temp = struct.unpack_from('>1B', label, index)
        lab.append(temp[0])
        index += lab_size_bit
    return lab

因为图片是28X28=784大小的,在刚开始读取图像文件的时候是需要后移4个byte的,之后每次图片读取的索引都需要后移784byte

在刚开始的时候标签文件需要后移2个byte,因为图像标签是1byte大小的,因此之后每次标签索引都需要后移1byte

最后在main函数里面通过循环读取图像和标签文件,演示程序中取了9张图片和9个标签,从索引0开始读取的结果如下图所示:
在这里插入图片描述
索引4开始读取的结果如下图所示:
在这里插入图片描述
可以看到图片和标签一一对应,因此程序逻辑没有问题,明天就开始建立神经网络模型了。

源码:

import pandas
import struct
import numpy as np
# import tensorflow as tf
import matplotlib.pyplot as plt

img_size_bit = struct.calcsize('>784B')
lab_size_bit = struct.calcsize('>1B')

def readFile(type=0):#0 is traindata,1 is testdata
    if (type == 0):
        with open('./dataSet/train-images.idx3-ubyte','rb') as ti:
            train_image = ti.read()
        with open('./dataSet/train-labels.idx1-ubyte', 'rb') as tl:
            train_labels = tl.read()
        return train_image,train_labels
    elif (type == 1):
        with open('./dataSet/t10k-images.idx3-ubyte', 'rb') as t_i:
            test_image = t_i.read()
        with open('./dataSet/t10k-labels.idx1-ubyte', 'rb') as t_l:
            test_labels = t_l.read()
        return test_image,test_labels

def getImages(image,n,startidx=0):
    img = []
    index = struct.calcsize('>IIII') + img_size_bit * startidx
    for i in range(n):
        temp = struct.unpack_from('>784B', image, index)
        img.append(np.reshape(temp, (28, 28)))
        index += img_size_bit
    return img

def getLabels(label,n,startidx=0):
    lab = []
    index = struct.calcsize('>II') + lab_size_bit * startidx
    for i in range(n):
        temp = struct.unpack_from('>1B', label, index)
        lab.append(temp[0])
        index += lab_size_bit
    return lab


if __name__ == '__main__':
    n = 9
    image, label = readFile(1)
    train_img = getImages(image, n)
    train_lab = getLabels(label, n)

    for i in range(n):
        plt.subplot(int(np.sqrt(n)), int(np.sqrt(n)), 1 + i)
        title = "label:" + str(train_lab[i])
        plt.title(title)
        plt.axis('off')
        plt.subplots_adjust(hspace=0.4)
        plt.imshow(train_img[i], cmap='gray')
    plt.show()
    # print(type(label))
    # print(len(label))
    # print(lab_size_bit)

在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-07-25 11:39:27  更:2021-07-25 11:44:09 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/17 20:45:27-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码