IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 基于语义分割的钢材表面缺陷检测算法 -> 正文阅读

[人工智能]基于语义分割的钢材表面缺陷检测算法

1.导入模块

# 获取权限:访问云端硬盘中的所有文件
from os.path import join
from google.colab import drive

ROOT = "/content/drive"
drive.mount(ROOT)
!pip install albumentations==0.4.6
import albumentations 
from albumentations.pytorch import ToTensorV2
import os
import time
from typing import Optional, Tuple
import torch
from torch.utils.data import Dataset, random_split, DataLoader
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import pandas as pd
import numpy as np
import cv2
from albumentations import HorizontalFlip, VerticalFlip, RandomBrightness,  ShiftScaleRotate, Normalize, Resize, Compose, GaussNoise, ElasticTransform
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from tqdm.notebook import tqdm
!pip install segmentation_models_pytorch
import segmentation_models_pytorch as smp # https://github.com/qubvel/segmentation_models.pytorch
%matplotlib inline

2.数据集

Kaggle中谢韦尔钢铁公司提供的带钢缺陷数据集,该数据集中提供了四种类型的带钢表面缺陷。训练集共有12568张,测试集5506张。图像尺寸为1600×256。

2.1 加载数据集

在这里插入代码片# 数据集原始地址:https://www.kaggle.com/c/severstal-steel-defect-detection/data
!git clone https://github.com/JasonYangCode/Data_set_04
# loading dataset
DATA_DIR = '/content/Data_set_04'

TRAIN_IMG_DIR = DATA_DIR + '/train_images' # Contains training images
TEST_IMG_DIR = DATA_DIR + '/test_images'  # Contains test images

TRAIN_CSV = DATA_DIR + '/train.csv'  # Contains real labels for training images
TEST_CSV = DATA_DIR + '/sample_submission.csv'   # Contains dummy labels for test image
TRAINED_WEIGHTS = './model.pth'     # Contains trained weights
SUBMISSION_FILE = './submission.csv'     # Contains trined labels for test image
# PRE_TRAINED_WEIGHTS = '../input/asigment5-zero-to-gans-novikov-ms-model/model.pth'

train_df = pd.read_csv(TRAIN_CSV)
test_df = pd.read_csv(TEST_CSV)
# 计算每张图片的masks的数量

def survey(df_in: pd.DataFrame):

    df_maskCnt = pd.DataFrame({'maskCount' : df_in.groupby('ImageId').size()})
    df_out = pd.merge(df_in, df_maskCnt, on='ImageId')
    df_out = df_out.sort_values(by=['maskCount', 'ImageId'], ascending=False)

    df_out['ClassIds'] = pd.Series(dtype=object)

    for i, row_i in df_out.iterrows():
        ClassId_list = []
        for j, row_j in df_out.loc[df_out['ImageId'] == row_i['ImageId']].iterrows():
            ClassId_list.append(row_j['ClassId'])
        df_out.at[i,'ClassIds'] = ClassId_list
    # print(df_out.head())    
    return df_out

df = survey(train_df)
# 将ClassId转换为masks中的索引
def class_id2index(val: int):
    return int(val-1)

# 将masks中的索引转换为ClassId
def index2class_id(val: int):
    """ converts index to ClassId in masks"""
    return int(val+1)
    
# 从 df 返回 num classId 的总数和列表
def counter_func(df_in):
    length = 4
    counter = np.zeros(length, dtype=int)
    total = 0
    for i in range(length):
        try:
            index = class_id2index(df_in.index[i])
            counter[index] = df_in.iloc[i, 0]  
        except:
            continue
        
        
    total = counter.sum()
    return total, counter 
mask_count_df_pivot = pd.DataFrame({'ClassCount' : df.groupby('ImageId').size()})
mask_count_df_pivot = pd.DataFrame({'Num' : mask_count_df_pivot.groupby('ClassCount').size()})
mask_count_df_pivot.sort_values('ClassCount', ascending=True, inplace=True)
ClassId_count_df = df.set_index(["ImageId", "ClassId"]).count(level='ClassId')

total, counter = counter_func(ClassId_count_df)
print('Total strings: {0}, 1 class: {1}, 2 class: {2}, 3 class: {3}, 4 class: {4}'.format(total, *counter))
total, counter = counter_func(mask_count_df_pivot)
print('Total images: {0}, one class: {1}, two classes: {2}, three classes: {3}, four classes: {4}'.format(total, *counter))
# https://www.kaggle.com/paulorzp/rle-functions-run-lenght-encode-decode

# img:numpy 数组,1 - 掩码,0 - 背景,以字符串格式返回运行长度(起始长度)
def mask2rle(img: np.array):

    pixels = img.T.flatten()
    pixels = np.concatenate([[0], pixels, [0]])
    runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
    runs[1::2] -= runs[::2]
    rle = ' '.join(str(x) for x in runs)
    if rle == np.nan:
        return ''
    else:
        return rle #returns a string formated (start length)


def rle2mask(mask_rle: str, input_shape: Tuple[int, int, int]=(256,1600,1)):
    
    """    
    img
    The pixel order of the line is from top to bottom from the left vertical line.
     It must be made and handed over.
     width/height should be made [height, width, ...] to fit the rows and columns.

     example when width=4, height=3
    
    s = [1,2,3,4,5,6,7,8,9,10,11,12]
        => 1,2,3 First row on the left, second row on 4,5,6
    
    mask_rle: run-length as string formated (start length)
    shape: (height,width)!!!  of array to return
    Returns numpy array, 1 - mask, 0 - background
    """
    
    # print('>>> rle2mask rle2mask: ', mask_rle)
    height, width = input_shape[:2]



    mask = np.zeros(width * height, dtype=np.uint8)
    if mask_rle is not np.nan:
        s = mask_rle.split()
        array = np.asarray([int(x) for x in s])
        starts = array[0::2]
        lengths = array[1::2]

        for index, start in enumerate(starts):
            begin = int(start - 1)
            end = int(begin + lengths[index])
            mask[begin : end] = 1

    rle_mask = mask.reshape(width, height).T
    # print('>>> rle2mask mask.shape: ', rle_mask.shape)
    # print('>>> rle2mask mask: ', rle_mask)
    return rle_mask

# Test RLE functions
assert mask2rle(rle2mask(df['EncodedPixels'].iloc[0]))==df['EncodedPixels'].iloc[0]
assert mask2rle(rle2mask('1 1'))=='1 1'


def build_masks(rle_labels: pd.DataFrame, input_shape: Tuple[int, int, int]=(256, 1600, 4)):
 
    masks = np.zeros(input_shape)
    # print('>>> build_masks')
    # print('>>> rle_labels.head()', rle_labels.head())
    for _, val in rle_labels.iterrows():
        # print('>>> build_masks: val[ImageId] :', val['ImageId'])
        # print('>>> build_masks: val[ClassId] :', val['ClassId'])
        masks[:, :, class_id2index(val['ClassId'])] = rle2mask(val['EncodedPixels'], input_shape)
        # print(">>> build_masks: masks ", masks.shape)
        # print('<<< build_masks')
    return masks #(256, 1600, 4)

def make_mask(row_id_in: int, df_in: pd.DataFrame,  input_shape_in: Tuple[int, int, int] = (256, 1600, 4)):

    fname = df_in.iloc[row_id_in].ImageId
    # print('>>>make_mask row_id_in: ', row_id_in, ' fname: ', fname)
    rle_labels = df_in[df_in['ImageId'] == fname][['ImageId', 'ClassId', 'EncodedPixels']]
    # print('>>>make_mask rle_labels', rle_labels)
    masks = build_masks(rle_labels, input_shape=input_shape_in) #(256, 1600, 4)
    # print('>>>make_mask masks: {0}'.format(masks))
    return fname, masks
assert mask2rle(np.zeros((256, 1600), np.float32)) == ''

2.2数据集可视化

# 可视化
def show_images(df_in: pd.DataFrame, img_dir: str, trained_df_in: pd.DataFrame = None):

    local_df = df_in
    local_trained_df = trained_df_in
    columns = 1
    if type(trained_df_in) == pd.DataFrame:
        rows = 15
    else:
        rows = 10
    
    
    fig = plt.figure(figsize=(20,80))
    
    def sorter(local_df):
        local_df = local_df.sort_values(by=['maskCount', 'ImageId'], ascending=False) # To show as many valid masks as possible
        grp = local_df['ImageId'].drop_duplicates()[0:rows]
        return grp

    ax_idx = 1
    for filename in sorter(df_in):
        if ax_idx > rows * columns * 2:
            break

        subdf = local_df[local_df['ImageId'] == filename].reset_index() # chose file with masks

        fig.add_subplot(rows * 2, columns, ax_idx).set_title(filename)
        img = cv2.imread(os.path.join(img_dir, filename ))
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img_2 = cv2.imread(os.path.join(img_dir, filename ))
        img_2 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        plt.imshow(img)

        # 显示来自第一个df的mask  
        ax_idx += 1
        fig.add_subplot(rows * 2, columns, ax_idx).\
            set_title(filename + 'Highlighted defects ClassIds:' + str(subdf['ClassIds'][0]))

        colors = [(255, 51, 51),(255,255,51), (51,255,51), (51,51,255)]
        masks = build_masks(subdf, (256, 1600, 4)) # get masks (256, 1600, 4)
        masks_len = masks.shape[2] # get 4
        
        for i in range(masks_len):
            img[masks[:, :, i] == 1] = colors[i]

        plt.imshow(img)
        ax_idx += 1


        # 显示来自第二个df的mask
        if type(trained_df_in) == pd.DataFrame:
            subdf_trained = local_trained_df[local_trained_df['ImageId'] == filename].reset_index() # chose file with masks
            fig.add_subplot(rows * 2, columns, ax_idx).\
                set_title('Trained  '+ filename + ' Highlighted defects ClassIds: ' + str(subdf['ClassIds'][0]))

            colors = [(204, 51, 51),(204,204,51), (51,204,51), (51,51,204)]
            masks = build_masks(subdf_trained, (256, 1600, 4)) # get masks (256, 1600, 4)
            masks_len = masks.shape[2] # get 4

            for i in range(masks_len):
                img_2[masks[:, :, i] == 1] = colors[i]
                
            plt.imshow(img_2)
            ax_idx += 1
        
    print("Class 1 = Red","Class 2 = Yellow","Class 3 = Green","Class 4 = Blue", sep='\n')
    plt.show()
    
show_images(df, TRAIN_IMG_DIR)

在这里插入图片描述
在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-07-27 16:13:42  更:2021-07-27 16:15:35 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/17 20:49:54-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码