HW 4
Download
!gdown --id '1ksbRUG0S646Y-mhN0t5RZSSlE9BLlFKh' --output Dataset.zip
!unzip Dataset.zip
dataset
选取的是Voxceleb.1数据集,随机挑选了600个发言的来组成
dataset的构成
- Args:
- data_dir: The path to the data directory.
- metadata_path: The path to the metadata.
- segment_len: The length of audio segment for training.
- The architecture of data directory
- data directory
|---- metadata.json |---- testdata.json |---- mapping.json |---- uttr-{random string}.pt - The information in metadata
- “n_mels”: The dimention of mel-spectrogram. #梅尔频谱,通过spectrogram和若干的梅尔滤波器得到
- “speakers”: A dictionary.
- Key: speaker ids.
- value: “feature_path” and “mel_len”
import os
import json
import torch
import random
from pathlib import Path
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
class myDataset(Dataset):
def __init__(self, data_dir, segment_len=128):
self.data_dir = data_dir
self.segment_len = segment_len
mapping_path = Path(data_dir) / "mapping.json"
mapping = json.load(mapping_path.open())
self.speaker2id = mapping["speaker2id"]
metadata_path = Path(data_dir) / "metadata.json"
metadata = json.load(open(metadata_path))["speakers"]
self.speaker_num = len(metadata.keys())
self.data = []
for speaker in metadata.keys():
for utterances in metadata[speaker]:
self.data.append([utterances["feature_path"], self.speaker2id[speaker]])
def __len__(self):
return len(self.data)
def __getitem__(self, index):
feat_path, speaker = self.data[index]
mel = torch.load(os.path.join(self.data_dir, feat_path))
if len(mel) > self.segment_len:
start = random.randint(0, len(mel) - self.segment_len)
mel = torch.FloatTensor(mel[start:start+self.segment_len])
else:
mel = torch.FloatTensor(mel)
speaker = torch.FloatTensor([speaker]).long()
return mel, speaker
def get_speaker_number(self):
return self.speaker_num
Dataloader
import torch
from torch.utils.data import DataLoader, random_split
from torch.nn.utils.rnn import pad_sequence
def collate_batch(batch):
"""Collate a batch of data."""
mel, speaker = zip(*batch)
mel = pad_sequence(mel, batch_first=True, padding_value=-20)
return mel, torch.FloatTensor(speaker).long()
def get_dataloader(data_dir, batch_size, n_workers):
"""Generate dataloader"""
dataset = myDataset(data_dir)
speaker_num = dataset.get_speaker_number()
trainlen = int(0.9 * len(dataset))
lengths = [trainlen, len(dataset) - trainlen]
trainset, validset = random_split(dataset, lengths)
train_loader = DataLoader(
trainset,
batch_size=batch_size,
shuffle=True,
drop_last=True,
num_workers=n_workers,
pin_memory=True,
collate_fn=collate_batch,
)
valid_loader = DataLoader(
validset,
batch_size=batch_size,
num_workers=n_workers,
drop_last=True,
pin_memory=True,
collate_fn=collate_batch,
)
return train_loader, valid_loader, speaker_num
Model
- TransformerEncoderLayer:
- Base transformer encoder layer in Attention Is Al l You Need
- Parameters:
- d_model: the number of expected features of the input (required).
- nhead: the number of heads of the multiheadattention models (required).
- dim_feedforward: the dimension of the feedforward network model (default=2048).
- dropout: the dropout value (default=0.1). #防止过拟合,提升模型泛化能力
- activation: the activation function of intermediate layer, relu or gelu (default=relu).
- TransformerEncoder:
- TransformerEncoder is a stack of N transformer encoder layers
- Parameters:
- encoder_layer: an instance of the TransformerEncoderLayer() class (required).
- num_layers: the number of sub-encoder-layers in the encoder (required).
- norm: the layer normalization component (optional).
import torch
import torch.nn as nn
import torch.nn.functional as F
class Classifier(nn.Module):
def __init__(self, d_model=80, n_spks=600, dropout=0.1):
super().__init__()
self.prenet = nn.Linear(40, d_model)
self.encoder_layer = nn.TransformerEncoderLayer(
d_model=d_model, dim_feedforward=256, nhead=2
)
self.pred_layer = nn.Sequential(
nn.Linear(d_model, d_model),
nn.ReLU(),
nn.Linear(d_model, n_spks),
)
def forward(self, mels):
"""
args:
mels: (batch size, length, 40)
return:
out: (batch size, n_spks)
"""
out = self.prenet(mels)
out = out.permute(1, 0, 2)
out = self.encoder_layer(out)
out = out.transpose(0, 1)
stats = out.mean(dim=1)
out = self.pred_layer(stats)
return out
Learning rate schedule
import math
import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
def get_cosine_schedule_with_warmup(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
num_cycles: float = 0.5,
last_epoch: int = -1,
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer (:class:`~torch.optim.Optimizer`):
The optimizer for which to schedule the learning rate.
num_warmup_steps (:obj:`int`):
The number of steps for the warmup phase.
num_training_steps (:obj:`int`):
The total number of training steps.
num_cycles (:obj:`float`, `optional`, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (:obj:`int`, `optional`, defaults to -1):
The index of the last epoch when resuming training.
Return:
:obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))*0.8
progress = float(current_step - num_warmup_steps) / float(
max(1, num_training_steps - num_warmup_steps)
)
return max(
0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
Model Function
import torch
def model_fn(batch, model, criterion, device):
"""Forward a batch through the model."""
mels, labels = batch
mels = mels.to(device)
labels = labels.to(device)
outs = model(mels)
loss = criterion(outs, labels)
preds = outs.argmax(1)
accuracy = torch.mean((preds == labels).float())
return loss, accuracy
这段就是常见的基础定义,不多进行赘述
Validate(验证)
from tqdm import tqdm
import torch
def valid(dataloader, model, criterion, device):
"""Validate on validation set."""
model.eval()
running_loss = 0.0
running_accuracy = 0.0
pbar = tqdm(total=len(dataloader.dataset), ncols=0, desc="Valid", unit=" uttr")
for i, batch in enumerate(dataloader):
with torch.no_grad():
loss, accuracy = model_fn(batch, model, criterion, device)
running_loss += loss.item()
running_accuracy += accuracy.item()
pbar.update(dataloader.batch_size)
pbar.set_postfix(
loss=f"{running_loss / (i+1):.2f}",
accuracy=f"{running_accuracy / (i+1):.2f}",
)
pbar.close()
model.train()
return running_accuracy / len(dataloader)
Main function
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.optim import AdamW
from torch.utils.data import DataLoader, random_split
def parse_args():
"""arguments"""
config = {
"data_dir": "./Dataset",
"save_path": "model.ckpt",
"batch_size": 128,
"n_workers": 8,
"valid_steps": 2000,
"warmup_steps": 1000,
"save_steps": 10000,
"total_steps": 70000,
}
return config
def main(
data_dir,
save_path,
batch_size,
n_workers,
valid_steps,
warmup_steps,
total_steps,
save_steps,
):
"""Main function."""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[Info]: Use {device} now!")
train_loader, valid_loader, speaker_num = get_dataloader(data_dir, batch_size, n_workers)
train_iterator = iter(train_loader)
print(f"[Info]: Finish loading data!",flush = True)
model = Classifier(n_spks=speaker_num).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = AdamW(model.parameters(), lr=1e-3)
scheduler = get_cosine_schedule_with_warmup(optimizer, warmup_steps, total_steps)
print(f"[Info]: Finish creating model!",flush = True)
best_accuracy = -1.0
best_state_dict = None
pbar = tqdm(total=valid_steps, ncols=0, desc="Train", unit=" step")
for step in range(total_steps):
try:
batch = next(train_iterator)
except StopIteration:
train_iterator = iter(train_loader)
batch = next(train_iterator)
loss, accuracy = model_fn(batch, model, criterion, device)
batch_loss = loss.item()
batch_accuracy = accuracy.item()
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
pbar.update()
pbar.set_postfix(
loss=f"{batch_loss:.2f}",
accuracy=f"{batch_accuracy:.2f}",
step=step + 1,
)
if (step + 1) % valid_steps == 0:
pbar.close()
valid_accuracy = valid(valid_loader, model, criterion, device)
if valid_accuracy > best_accuracy:
best_accuracy = valid_accuracy
best_state_dict = model.state_dict()
pbar = tqdm(total=valid_steps, ncols=0, desc="Train", unit=" step")
if (step + 1) % save_steps == 0 and best_state_dict is not None:
torch.save(best_state_dict, save_path)
pbar.write(f"Step {step + 1}, best model saved. (accuracy={best_accuracy:.4f})")
pbar.close()
if __name__ == "__main__":
main(**parse_args())
Dataset of Inference
一个后续主函数要用到的数据集,用于定义inference_collate_batch来进行batch的分配
import os
import json
import torch
from pathlib import Path
from torch.utils.data import Dataset
class InferenceDataset(Dataset):
def __init__(self, data_dir):
testdata_path = Path(data_dir) / "testdata.json"
metadata = json.load(testdata_path.open())
self.data_dir = data_dir
self.data = metadata["utterances"]
def __len__(self):
return len(self.data)
def __getitem__(self, index):
utterance = self.data[index]
feat_path = utterance["feature_path"]
mel = torch.load(os.path.join(self.data_dir, feat_path))
return feat_path, mel
def inference_collate_batch(batch):
"""Collate a batch of data."""
feat_paths, mels = zip(*batch)
return feat_paths, torch.stack(mels)
Main function of Inference
定义与写文件
import json
import csv
from pathlib import Path
from tqdm.notebook import tqdm
import torch
from torch.utils.data import DataLoader
def parse_args():
"""arguments"""
config = {
"data_dir": "./Dataset",
"model_path": "./model.ckpt",
"output_path": "./output.csv",
}
return config
def main(
data_dir,
model_path,
output_path,
):
"""Main function."""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[Info]: Use {device} now!")
mapping_path = Path(data_dir) / "mapping.json"
mapping = json.load(mapping_path.open())
dataset = InferenceDataset(data_dir)
dataloader = DataLoader(
dataset,
batch_size=1,
shuffle=False,
drop_last=False,
num_workers=8,
collate_fn=inference_collate_batch,
)
print(f"[Info]: Finish loading data!",flush = True)
speaker_num = len(mapping["id2speaker"])
model = Classifier(n_spks=speaker_num).to(device)
model.load_state_dict(torch.load(model_path))
model.eval()
print(f"[Info]: Finish creating model!",flush = True)
results = [["Id", "Category"]]
for feat_paths, mels in tqdm(dataloader):
with torch.no_grad():
mels = mels.to(device)
outs = model(mels)
preds = outs.argmax(1).cpu().numpy()
for feat_path, pred in zip(feat_paths, preds):
results.append([feat_path, mapping["id2speaker"][str(pred)]])
with open(output_path, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerows(results)
if __name__ == "__main__":
main(**parse_args())
总结
最后跑出来好像是刚刚到达baseline,连medium的脚都冇碰到(泪目),太菜了,只能接着学下去了…这个看不懂还倒腾了好几天(不过这几天回家也荒废了不少时间),这个作业也暂时算是结束了,看看后面学完以后能不能来优化一哈。
|