IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 目标检测 YOLOv5 - 在多类别中应用NMS(非极大值抑制) -> 正文阅读

[人工智能]目标检测 YOLOv5 - 在多类别中应用NMS(非极大值抑制)

目标检测 YOLOv5 - 在多类别中应用NMS(非极大值抑制)

flyfish

非极大值抑制(Non-maximum Suppression (NMS))的作用简单说就是模型检测出了很多框,我应该留哪些。
在这里插入图片描述

根据参数执行多个类一起应用NMS还是执行按照不同的类分别应用NMS
不同的类分别应用NMS(非极大值抑制),即每个索引值对应一个类别,不同类别的元素之间不会应用NMS。
实现方法一句话
多类别NMS(非极大值抑制)的处理策略是为了让每个类都能独立执行NMS,在所有的边框上添加一个偏移量。偏移量仅取决于类IDX,并且足够大,以便来自不同类的框不会重叠。

YOLOv5的处理方式

就是上面的一句话。
实现代码在utils/general.py

c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS

agnostic参数 True表示多个类一起计算nms,False表示按照不同的类分别进行计算nms
代码重点是在 '+c’这里的c就是偏移量
x[:, :4]表示box(从二维看第0,1,2,3列)
x[:, 4] 表示分数(从二维看第4列)
x[:, 5:6]表示类IDX(从二维看第5列)
max_wh这里是4096,这样偏移量仅取决于类IDX,并且足够大。

在终端执行命令行的时候,可以传参决定执行多个类一起应用NMS还是执行按照不同的类分别应用NMS

detect.py
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')

不同的类分别应用NMS,普通方式的实现

最普通的的方式就是一个for循环,分别计算每一个类的NMS
for循环for class_id in torch.unique(idxs)

def _batched_nms_vanilla(
    boxes: Tensor,
    scores: Tensor,
    idxs: Tensor,
    iou_threshold: float,
) -> Tensor:
    keep_mask = torch.zeros_like(scores, dtype=torch.bool)
    for class_id in torch.unique(idxs):
        curr_indices = torch.where(idxs == class_id)[0]
        curr_keep_indices = nms(boxes[curr_indices], scores[curr_indices], iou_threshold)
        keep_mask[curr_indices[curr_keep_indices]] = True
    keep_indices = torch.where(keep_mask)[0]
    return keep_indices[scores[keep_indices].sort(descending=True)[1]]

不同的类分别应用NMS,使用加偏移量的实现

def _batched_nms_coordinate_trick(
    boxes: Tensor,
    scores: Tensor,
    idxs: Tensor,
    iou_threshold: float,
) -> Tensor:
    if boxes.numel() == 0:
        return torch.empty((0,), dtype=torch.int64, device=boxes.device)
    max_coordinate = boxes.max()
    offsets = idxs.to(boxes) * (max_coordinate + torch.tensor(1).to(boxes))
    boxes_for_nms = boxes + offsets[:, None]
    keep = nms(boxes_for_nms, scores, iou_threshold)
    return keep

YOLOv5也可以不用自己实现,调用PyTorch的torchvision.ops.batched_nms

为什么参数用class-agnostic这个词

目标检测器有类别不可知检测器(class-agnostic detector)和类别可知检测器(class-aware detector)。
类别不可知检测器(class-agnostic detector)在不知道它们属于哪个类别的情况下检测到一堆对象。简单地说,他们只探测“前景”物体。类似前景={猫,狗,车,飞机,…。}。因为它不知道它检测到的对象的类别,所以我们称之为class-agnostic(类不可知性)。
类别可知检测器(class-aware detector)在检测出框时就检测出了类别,class与box已经做了关联。
所以当不知道类别只有边框或者所有类的所有边框一起应用NMS时,class-agnostic就设置为True

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-07-29 23:26:58  更:2021-07-29 23:27:17 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/22 10:21:21-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码