[源码解析] 深度学习分布式训练框架 horovod (20) — Elastic Training Operator
0x00 摘要
Horovod 是一款基于 AllReduce 的分布式训练框架。凭借其对 TensorFlow、PyTorch 等主流深度学习框架的支持,以及通信优化等特点,Horovod 被广泛应用于数据并行的训练中。
本文是 horovod on k8s 的最后一篇,看看 MPI-Operator 可能被如何改进,主要就是根据 Elastic Training Operator 作者 团队的博客内容来学习源码。所以本文以大量源码为主。
本系列其他文章链接如下:
[\源码解析] 深度学习分布式训练框架 Horovod — (1) 基础知识
[\源码解析] 深度学习分布式训练框架 horovod (2) — 从使用者角度切入
[\源码解析] 深度学习分布式训练框架 horovod (3) — Horovodrun背后做了什么
[\源码解析] 深度学习分布式训练框架 horovod (4) — 网络基础 & Driver
[\源码解析] 深度学习分布式训练框架 horovod (5) — 融合框架
[\源码解析] 深度学习分布式训练框架 horovod (6) — 后台线程架构
[\源码解析] 深度学习分布式训练框架 horovod (7) — DistributedOptimizer
[源码解析] 深度学习分布式训练框架 horovod (8) — on spark
[源码解析] 深度学习分布式训练框架 horovod (9) — 启动 on spark
[源码解析] 深度学习分布式训练框架 horovod (10) — run on spark
[源码解析] 深度学习分布式训练框架 horovod (11) — on spark — GLOO 方案
[源码解析] 深度学习分布式训练框架 horovod (12) — 弹性训练总体架构
[源码解析] 深度学习分布式训练框架 horovod (13) — 弹性训练之 Driver
[源码解析] 深度学习分布式训练框架 horovod (14) — 如何发现节点挂了?
[源码解析] 深度学习分布式训练框架 horovod (15) — 广播 & 通知
[源码解析] 深度学习分布式训练框架 horovod (16) — 弹性训练之Worker生命周期
[源码解析] 深度学习分布式训练框架 horovod (17) — 弹性训练之容错
[源码解析] 深度学习分布式训练框架 horovod (18) — kubeflow tf-operator
[源码解析] 深度学习分布式训练框架 horovod (19) — kubeflow MPI-operator
0x01 背景知识
0x01, 0x02 两节均来自于 Elastic Training Operator 团队博客内容,这个博客真得很给力。
1.1 已有弹性能力
Kubernetes 和云计算提供敏捷性和伸缩性,我们可以通过 cluster-AutoScaler 等组件为训练任务设置弹性策略,利用 Kubernetes 的弹性能力,按需创建,减少 GPU 设备空转。
但这种伸缩模式面对训练这种离线任务还是略有不足:
- 不支持容错,当部分 Worker 由于设备原因失败,整个任务需要停止重来。
- 训练任务一般时间较长,占用算力大,任务缺少弹性能力。当资源不足时,除非任务终止,无法按需为其他业务腾出资源。
- 训练任务时间较长,不支持 worker 动态配置, 无法安全地使用抢占实例,发挥云上最大性价比
如何给训练任务赋予弹性能力,是提高性价比的关键路径。近期 horovod 等分布式框架逐渐支持了 Elastic Training,即弹性训练能力。也就是允许一个训练任务在执行的过程中动态的扩容或者缩容训练 worker, 从不会引起训练任务的中断。需要在代码中做少量修改适配,可参考:https://horovod.readthedocs.io/en/stable/elastic_include.html。
1.2 mpi-operator 的缺点
在 mpi-operator 中,参与训练的 Worker 都是作为静态资源设计和维护,支持弹性训练模式后,给任务增加了灵活性,同时也给运维层带来了挑战,例如:
- 必须通过 horovod 提供的 horovordrun 作为入口,horovod 中 launcher 通过 ssh 登陆 worker,需要打通 launcher 和 worker 之间的登陆隧道。
- 负责计算弹性的 Elastic Driver 模块通过指定 discover_host 脚本获取最新 worker 拓扑信息,从而拉起或停止 worker 实例。当 worker 变化时,首先要更新 discover_host 脚本的返回值。
- 在抢占或价格计算等场景中,有时需要指定 worker 缩容,K8s 原生的编排元语 deployment,statefulset 无法满足指定缩容的场景。
针对以上问题,我们设计开发了 et-operator,提供 TrainingJob CRD 描述训练任务, ScaleOut 和 ScaleIn CRD 描述扩容和缩容操作, 通过它们的组合,使我们的训练任务更具有弹性。将这个方案开源,欢迎大家提需求、交流、吐槽。
开源方案地址:https://github.com/AliyunContainerService/et-operator
0x02 总体架构
TrainingJob Controller 主要有以下功能:
- 维护 TrainingJob 的创建/删除生命周期,以及子资源管理。
- 执行扩缩容操作。
- 容错,当 worker 被驱逐,创建新的 worker 加入到训练中。
2.1 资源创建
TrainingJob 子资源创建顺序如下:
- 创建打通 ssh 所需的密钥对, 创建 secret。
- 创建 workers,包含 service 和 pod,挂载 secret 公钥。
- 创建 configmap, 包含 discover_host 脚本 , hostfile 文件。
- 创建 launcher,挂载 configmap。由于 hostfile 后续会随着拓扑关系修改,所以 hostfile 单独通过 initcontainer 从 configmap 拷贝到单独目录。
TrainingJob 相关资源:
2.2 角色
TrainingJob CR 的配置分为 Lanucher 和 Worker。在 Launcher 中指定任务的镜像和启动执行, 默认 et-operator 会根据 worker 分配情况,生成一个 hostfile 文件和 discover_host 脚本,discover_host 脚本挂载到 Launcher 的 /etc/edl/discover_hosts.sh 文件, 在入口脚本的 horovodrun 执行中通过 --host-discovery-script 参数指定。在 Worker 设置中指定 worker 的镜像和 GPU 占用 ,并可以通过 maxReplicas / minReplicas 指定 workers 的副本数允许范围。
2.3 程序主流程
程序主流程图如下:
0x03 入口
其实,学习 ETO 主要就是学习如何扩容和缩容。但是为了学习这个,我们还是需要梳理一下程序逻辑。
不熟悉 K8S 的同学顺便也一起看看其 CRD 如何使用。
3.1 创建
入口代码是 main.go/main 函数,从入口可以看出,
- 生成了 Controller.Manager。
- 利用这个 Manager,构建了三个 Reconciler :TrainingJobReconciler,ScaleInReconciler,ScaleOutReconciler。
- 然后启动 Manager;
func main() {
mgr, err := ctrl.NewManager(ctrl.GetConfigOrDie(), ctrl.Options{
Scheme: scheme,
MetricsBindAddress: metricsAddr,
LeaderElection: enableLeaderElection,
Port: 9443,
})
const jobPollInterval = "5s"
if err = controllers.NewReconciler(mgr, parseDurationOrPanic(jobPollInterval)).SetupWithManager(mgr); err != nil {
os.Exit(1)
}
if err = controllers.NewScaleOutReconciler(mgr, parseDurationOrPanic(jobPollInterval)).SetupWithManager(mgr); err != nil {
os.Exit(1)
}
if err = controllers.NewScaleInReconciler(mgr, parseDurationOrPanic(jobPollInterval)).SetupWithManager(mgr); err != nil {
os.Exit(1)
}
if err := mgr.Start(ctrl.SetupSignalHandler()); err != nil {
os.Exit(1)
}
}
3.2 设置
这里的配置就是建立了消息的响应函数,具体就是响应哪些 CR。
-
除了 TrainingJob 外,et-operator 同时支持 ScaleOut 和 ScaleIn 两种 CRD,下发训练任务扩容和缩容操作。 -
当下发一个 ScaleOut CR,ScaleOutController 触发 Reconcile, 这里工作很简单,根据 ScaleOut CR 中的 Selector 字段,找到 Scaler 对应的 TrainingJob,设置到 CR 的 OwnerReferences 上。 -
TrainingJobController 中监听到属于 TrainingJob 的 ScaleOut CR 有更新, 触发 TrainingJob 的 Reconcile,遍历过滤 TrainingJob 下 OwnerReference 指向的 ScaleIn 和 ScaleOut, 根据创建时间和状态时间决定执行的扩容或者缩容。 -
执行缩容时,可以通过 ScaleIn CR 中的 spec.toDelete.count 或 spec.toDelete.podNames 字段指定缩容的 worker。通过 count 配置缩容的数量,则通过 index 计算由高到低缩容 Worker。
func (r *ScaleInReconciler) SetupWithManager(mgr ctrl.Manager) error {
return ctrl.NewControllerManagedBy(mgr).
For(&kaiv1alpha1.ScaleIn{}).
Complete(r)
}
func (r *ScaleOutReconciler) SetupWithManager(mgr ctrl.Manager) error {
return ctrl.NewControllerManagedBy(mgr).
For(&kaiv1alpha1.ScaleOut{}).
Complete(r)
}
func (r *TrainingJobReconciler) SetupWithManager(mgr ctrl.Manager) error {
return ctrl.NewControllerManagedBy(mgr).
For(&kaiv1alpha1.TrainingJob{}).
Owns(&kaiv1alpha1.ScaleIn{}).
Owns(&kaiv1alpha1.ScaleOut{}).
Owns(&corev1.Pod{}).
Owns(&corev1.Service{}).
Owns(&corev1.ConfigMap{}).
Owns(&corev1.Secret{}).
Complete(r)
}
0x04 TrainingJobReconciler
顺着代码梳理一下,寻找其设计思想精微之处。
4.1 Reconcile
k8s operator 中reconcile方法 的作用就是不断的watch,当资源变化时 就会触发reconcile方法,理论上有多少次的变化就会执行多少次的reconcile方法。
当有消息来的时候,Reconcile 方法会得到调用。
func (r *TrainingJobReconciler) Reconcile(req ctrl.Request) (ctrl.Result, error) {
sharedTrainingJob := &kaiv1alpha1.TrainingJob{}
err := r.Get(context.Background(), req.NamespacedName, sharedTrainingJob)
trainingJob := sharedTrainingJob.DeepCopy()
r.Scheme.Default(trainingJob)
return r.ReconcileJobs(trainingJob)
}
4.2 ReconcileJobs
因为消息中状态是 “”,所以运行了 initializeJob,并且进行 reconcileResource。
func (r *TrainingJobReconciler) ReconcileJobs(job *kaiv1alpha1.TrainingJob) (result reconcile.Result, err error) {
oldJobStatus := job.Status.DeepCopy()
defer func() {
latestJob := &kaiv1alpha1.TrainingJob{}
err := r.Get(context.Background(), types.NamespacedName{
Name: job.Name,
Namespace: job.Namespace,
}, latestJob)
if err == nil {
if latestJob.ObjectMeta.ResourceVersion != job.ObjectMeta.ResourceVersion {
latestJob.Status = job.Status
job = latestJob
}
}
r.updateObjectStatus(job, oldJobStatus)
}()
switch job.Status.Phase {
case commonv1.JobSucceeded, commonv1.JobFailed:
err = r.cleanup(job)
case "", commonv1.JobCreated:
r.initializeJob(job)
err = r.reconcileResource(job)
case commonv1.JobRunning:
err = r.reconcileJobRunning(job)
case commonv1.Scaling:
err = r.executeScaling(job)
}
if err != nil {
if IsRequeueError(err) {
return RequeueAfterInterval(r.PollInterval, nil)
}
return RequeueAfterInterval(r.PollInterval, err)
}
return NoRequeue()
}
4.3 reconcileResource
reconcileResource 其实就是调用 doSteps,调用一个状态机继续初始化。
func (r *TrainingJobReconciler) reconcileResource(job *kaiv1alpha1.TrainingJob) error {
steps := r.newSteps()
err := r.doSteps(job, steps)
return err
}
4.4 doSteps
newSteps 构建了一个简单的状态机,是一个初始化步骤,按照序列执行,doSteps 会根据状态进行不同的分支处理。
有几点需要说明:
- Created 之后的几个状态,应该是: WorkersCreated —> WorkersReady ----> LauncherCreated —> JobRunning。
- 这个是事后状态,即对应 action 完成之后应该达到的状态。
- 在 for 循环之中,如果当前 Job 已经达到了某个状态,就跳过继续,直到某一个未完状态,就去执行对应的action。所以理论上说,会从 WorkersCreated 逐步执行到 JobRunning。
- 在某个状态对应的 Action 中,执行完成之后,会设置 Job 为这个 完成状态。
代码如下:
func (r *TrainingJobReconciler) newSteps() []Step {
return []Step{
Step{
JobCondition: commonv1.WorkersCreated,
Action: r.createTrainingJobWorkers,
},
Step{
JobCondition: commonv1.WorkersReady,
Action: r.waitWorkersRunning,
},
Step{
JobCondition: commonv1.LauncherCreated,
Action: r.createLauncher,
},
Step{
JobCondition: commonv1.JobRunning,
Action: r.syncLauncherState,
},
}
}
func (r *TrainingJobReconciler) doSteps(job *kaiv1alpha1.TrainingJob, steps []Step) error {
for _, step := range steps {
if hasCondition(*job.GetJobStatus(), step.JobCondition) {
continue
}
err := step.Action(job)
break
}
return nil
}
所以具体如下:
Request("")
K8S +--------------------> Reconcile
+
|
|
v
+----------------------+---------------------+
| ReconcileJobs |
| + |
| | |
| +------------------------------+ |
| | | | |
| v v v |
| "", JobCreated JobRunning Scaling |
+--------+-----------------------------------+
|
|
v
reconcileResource
+
|
|
v
+---------+---------------+
| doSteps |
| |
| |
| WorkersCreated +---------> createTrainingJobWorkers
| |
| |
| WorkersReady +----------> waitWorkersRunning
| |
| |
| LauncherCreated +--------> createLauncher
| |
| |
| JobRunning +------------> syncLauncherState
| |
+-------------------------+
4.5 createTrainingJobWorkers
在 doSteps 步骤中,先来到 createTrainingJobWorkers 这个Action。这里会设置 Job 状态为 WorkersCreated。
func (r *TrainingJobReconciler) createTrainingJobWorkers(job *kaiv1alpha1.TrainingJob) error {
if job.GetAttachMode() == kaiv1alpha1.AttachModeSSH {
if cm, err := r.GetOrCreateSecret(job); cm == nil || err != nil {
updateStatus(job.GetJobStatus(), common.JobFailed, trainingJobFailedReason, msg)
return nil
}
}
workers := getJobReplicasWorkers(job)
job.Status.TargetWorkers = workers
if err := r.CreateWorkers(job, workers); err != nil {
updateStatus(job.GetJobStatus(), common.JobFailed, trainingJobFailedReason, msg)
return nil
}
updateJobConditions(job.GetJobStatus(), common.WorkersCreated, "", msg)
return nil
}
4.5.1 CreateWorkers
CreateWorkers 会进行创建worker,如本文前面介绍,worker 包含 service 和 pod,所以创建过程具体为:
func (r *TrainingJobReconciler) CreateWorkers(job *kaiv1alpha1.TrainingJob, workers []string) error {
return r.createWorkers(job, workers, func(name string, index string) *corev1.Pod {
worker := newWorker(job, name, index)
return worker
})
}
4.5.1.1 createWorkers
这里会循环调用 createWorker 依据配置生成一系列 workers。
func (r *TrainingJobReconciler) createWorkers(job *kaiv1alpha1.TrainingJob, workers []string, newPod PodTplGenerator) error {
for _, podName := range workers {
index, err := getWorkerIndex(job.Name, podName)
if err != nil {
return err
}
_, err = r.createWorker(job, int32(index), newPod)
if err != nil {
return err
}
}
return nil
}
4.5.1.2 createWorker
这里会依据参数对 worker Pod 进行判断,如果不存在,则创建 某一个 worker。
func (r *TrainingJobReconciler) createWorker(job *kaiv1alpha1.TrainingJob, index int32, workerPodTempl PodTplGenerator) (*corev1.Pod, error) {
name := getWorkerName(job.Name, int(index))
indexStr := strconv.Itoa(int(index))
pod := &corev1.Pod{}
nsn := types.NamespacedName{
Name: name,
Namespace: job.Namespace,
}
err := r.Get(context.Background(), nsn, pod)
if err != nil {
if errors.IsNotFound(err) {
worker := workerPodTempl(name, indexStr)
if job.GetAttachMode() == kaiv1alpha1.AttachModeSSH {
util.MountRsaKey(worker, job.Name)
}
if err = r.Create(context.Background(), worker); err != nil {
return nil, err
}
}
}
service := &corev1.Service{}
err = r.Get(context.Background(), nsn, service)
if errors.IsNotFound(err) {
err = r.Create(context.Background(), newService(job, name, indexStr))
}
return nil, nil
}
4.5.1.3 newService
这里才来到具体创建service,真是百转千回。
func newService(obj interface{}, name string, index string) *corev1.Service {
job, _ := obj.(*kaiv1alpha1.TrainingJob)
labels := GenLabels(job.Name)
labels[labelTrainingRoleType] = worker
labels[replicaIndexLabel] = index
return &corev1.Service{
ObjectMeta: metav1.ObjectMeta{
Name: name,
Namespace: job.Namespace,
Labels: labels,
OwnerReferences: []metav1.OwnerReference{
*metav1.NewControllerRef(job, kaiv1alpha1.SchemeGroupVersionKind),
},
},
Spec: corev1.ServiceSpec{
ClusterIP: "None",
Selector: labels,
Ports: []corev1.ServicePort{
{
Name: "ssh-port",
Port: 22,
},
},
},
}
}
4.5.2 newWorker
newWorker 则构建了 Pod,就是比较常见的套路。
func newWorker(obj interface{}, name string, index string) *corev1.Pod {
job, _ := obj.(*kaiv1alpha1.TrainingJob)
labels := GenLabels(job.Name)
labels[labelTrainingRoleType] = worker
labels[replicaIndexLabel] = index
podSpec := job.Spec.ETReplicaSpecs.Worker.Template.DeepCopy()
if len(podSpec.Labels) == 0 {
podSpec.Labels = make(map[string]string)
}
for key, value := range labels {
podSpec.Labels[key] = value
}
setRestartPolicy(podSpec)
container := podSpec.Spec.Containers[0]
if len(container.Command) == 0 {
if job.GetAttachMode() == kaiv1alpha1.AttachModeSSH {
container.Command = []string{"sh", "-c", "/usr/sbin/sshd && sleep 365d"}
} else {
container.Command = []string{"sh", "-c", "sleep 365d"}
}
}
podSpec.Spec.Containers[0] = container
return &corev1.Pod{
ObjectMeta: metav1.ObjectMeta{
Name: name,
Namespace: job.Namespace,
Labels: podSpec.Labels,
Annotations: podSpec.Annotations,
OwnerReferences: []metav1.OwnerReference{
*metav1.NewControllerRef(job, kaiv1alpha1.SchemeGroupVersionKind),
},
},
Spec: podSpec.Spec,
}
}
逻辑如下:
Request("")
K8S +--------------------> Reconcile
+
|
|
v
+----------------------+---------------------+
| ReconcileJobs |
| + |
| | |
| +------------------------------+ |
| | | | |
| v v v |
| "", JobCreated JobRunning Scaling |
+--------+-----------------------------------+
|
|
v
reconcileResource
+
|
|
v
+---------+---------------+
| doSteps | +----> createWorkers +----> createWorker +----> newService
| | |
| | +
| WorkersCreated +---------> createTrainingJobWorkers +-----> CreateWorkers +-------> newWorker +------> WorkersCreated
| |
| |
| WorkersReady +----------> waitWorkersRunning
| |
| |
| LauncherCreated +--------> createLauncher
| |
| |
| JobRunning +------------> syncLauncherState
| |
+-------------------------+
手机如下:
4.8 createLauncher
建立完 worker 之后,就开始建立 Launcher。所以继续执行 createLauncher。
func (r *TrainingJobReconciler) createLauncher(job *kaiv1alpha1.TrainingJob) error {
if _, err := r.GetOrCreateLauncherServiceAccount(job); err != nil {
updateStatus(job.GetJobStatus(), commonv1.JobFailed, trainingJobFailedReason, msg)
return nil
}
if _, err := r.GetOrCreateLauncherRole(job, 0); err != nil {
updateStatus(job.GetJobStatus(), commonv1.JobFailed, trainingJobFailedReason, msg)
return nil
}
if _, err := r.GetLauncherRoleBinding(job); err != nil {
updateStatus(job.GetJobStatus(), commonv1.JobFailed, trainingJobFailedReason, msg)
return nil
}
if cm, err := r.CreateHostConfigMap(job); cm == nil || err != nil {
updateStatus(job.GetJobStatus(), commonv1.JobFailed, trainingJobFailedReason, msg)
return nil
}
launcher, err := r.GetLauncherJob(job)
if launcher == nil {
if _, err := r.CreateLauncher(job); err != nil {
updateStatus(job.GetJobStatus(), commonv1.JobFailed, trainingJobFailedReason, msg)
return nil
}
}
updateJobConditions(job.GetJobStatus(), commonv1.LauncherCreated, "", msg)
return nil
}
我们取两个重点步骤。
4.8.1 CreateHostConfigMap
这里获取关于host的配置。
func (r *TrainingJobReconciler) CreateHostConfigMap(job *kaiv1alpha1.TrainingJob) (*corev1.ConfigMap, error) {
return r.createConfigMap(job, newHostfileConfigMap)
}
func (r *TrainingJobReconciler) createConfigMap(job *kaiv1alpha1.TrainingJob, newCm func(job *kaiv1alpha1.TrainingJob) *corev1.ConfigMap) (*corev1.ConfigMap, error) {
cm := &corev1.ConfigMap{}
name := ctrl.Request{}
name.NamespacedName.Namespace = job.GetNamespace()
name.NamespacedName.Name = job.GetName() + configSuffix
err := r.Get(context.Background(), name.NamespacedName, cm)
if errors.IsNotFound(err) {
if err = r.Create(context.Background(), newCm(job)); err != nil {
return cm, err
}
}
return cm, nil
}
4.8.2 创建pod
4.8.2.1 CreateLauncher
这里进行pod的创建
func (r *TrainingJobReconciler) CreateLauncher(obj interface{}) (*corev1.Pod, error) {
job, ok := obj.(*kaiv1alpha1.TrainingJob)
launcher := newLauncher(job)
if job.GetAttachMode() == kaiv1alpha1.AttachModeSSH {
util.MountRsaKey(launcher, job.Name)
}
err := r.Create(context.Background(), launcher)
return launcher, nil
}
4.8.2.2 newLauncher
这里就是具体构建 Pod。
func newLauncher(obj interface{}) *corev1.Pod {
job, _ := obj.(*kaiv1alpha1.TrainingJob)
launcherName := job.Name + launcherSuffix
labels := GenLabels(job.Name)
labels[labelTrainingRoleType] = launcher
podSpec := job.Spec.ETReplicaSpecs.Launcher.Template.DeepCopy()
if len(podSpec.Labels) == 0 {
podSpec.Labels = make(map[string]string)
}
for key, value := range labels {
podSpec.Labels[key] = value
}
podSpec.Spec.InitContainers = append(podSpec.Spec.InitContainers, initContainer(job))
container := podSpec.Spec.Containers[0]
container.VolumeMounts = append(container.VolumeMounts,
corev1.VolumeMount{
Name: hostfileVolumeName,
MountPath: hostfileMountPath,
},
corev1.VolumeMount{
Name: configVolumeName,
MountPath: configMountPath,
},
corev1.VolumeMount{
Name: kubectlVolumeName,
MountPath: kubectlMountPath,
})
if job.GetAttachMode() == kaiv1alpha1.AttachModeKubexec {
container.Env = append(container.Env, corev1.EnvVar{
Name: "OMPI_MCA_plm_rsh_agent",
Value: getKubexecPath(),
})
}
podSpec.Spec.Containers[0] = container
podSpec.Spec.ServiceAccountName = launcherName
setRestartPolicy(podSpec)
hostfileMode := int32(0444)
scriptMode := int32(0555)
podSpec.Spec.Volumes = append(podSpec.Spec.Volumes,
corev1.Volume{
Name: hostfileVolumeName,
VolumeSource: corev1.VolumeSource{
EmptyDir: &corev1.EmptyDirVolumeSource{},
},
},
corev1.Volume{
Name: kubectlVolumeName,
VolumeSource: corev1.VolumeSource{
EmptyDir: &corev1.EmptyDirVolumeSource{},
},
},
corev1.Volume{
Name: configVolumeName,
VolumeSource: corev1.VolumeSource{
ConfigMap: &corev1.ConfigMapVolumeSource{
LocalObjectReference: corev1.LocalObjectReference{
Name: job.Name + configSuffix,
},
Items: []corev1.KeyToPath{
{
Key: hostfileName,
Path: hostfileName,
Mode: &hostfileMode,
},
{
Key: discoverHostName,
Path: discoverHostName,
Mode: &hostfileMode,
},
{
Key: kubexeclFileName,
Path: kubexeclFileName,
Mode: &scriptMode,
},
},
},
},
})
return &corev1.Pod{
ObjectMeta: metav1.ObjectMeta{
Name: launcherName,
Namespace: job.Namespace,
Labels: podSpec.Labels,
Annotations: podSpec.Annotations,
OwnerReferences: []metav1.OwnerReference{
*metav1.NewControllerRef(job, kaiv1alpha1.SchemeGroupVersionKind),
},
},
Spec: podSpec.Spec,
}
}
至此,一个新的训练job被运行起来,其逻辑拓展如下:
Request("")
K8S ---------------------> Reconcile
+
|
|
v
+----------------------+---------------------+
| ReconcileJobs |
| + |
| | |
| +------------------------------+ |
| | | | |
| v v v |
| "", JobCreated JobRunning Scaling |
+--------+-----------------------------------+
|
|
v
reconcileResource
+
|
|
v
+---------+---------------+
| doSteps | +----> createWorkers +----> createWorker +----> newService
| | |
| | |
| WorkersCreated +---------> createTrainingJobWorkers +-----> CreateWorkers +-------> newWorker +------> WorkersCreated
| |
| |
| WorkersReady +----------> waitWorkersRunning
| |
| |
| LauncherCreated +--------> createLauncher+----> CreateHostConfigMap +-----> CreateLauncher +------> newLauncher
| |
| |
| JobRunning +------------> syncLauncherState
| |
+-------------------------+
手机如下:
完成了新job的创建,我们看看本文的关键技术点,scaleOut 和 scaleIn。
0x05 ScaleOut
5.1 思路
ScaleOut 任务 CR如下:
当下发一个 ScaleOut CR,ScaleOutController 触发 Reconcile, 这里工作很简单,根据 ScaleOut CR 中的 Selector 字段,找到 Scaler 对应的 TrainingJob,设置到 CR 的 OwnerReferences 上。
以一个 ScaleOut 操作举例:
- apiVersion: kai.alibabacloud.com/v1alpha1
kind: ScaleOut
metadata:
creationTimestamp: "2020-11-04T13:54:26Z
name: scaleout-ptfnk
namespace: default
ownerReferences:
- apiVersion: kai.alibabacloud.com/v1alpha1
blockOwnerDeletion: true
controller: true
kind: TrainingJob
name: elastic-training // 指向扩容对象TrainingJob
uid: 075b9c4a-22f9-40ce-83c7-656b329a2b9e
spec:
selector:
name: elastic-training
toAdd:
count: 2
5.2 Reconcile
当下发一个 ScaleOut CR,ScaleOutController 触发 Reconcile。主要就是调用 setScalingOwner。
func (r *ScaleOutReconciler) Reconcile(req ctrl.Request) (ctrl.Result, error) {
scaleOut, err := getScaleOut(req.NamespacedName, r.Client)
if err != nil {
return RequeueImmediately()
}
if scaleOut == nil || scaleOut.DeletionTimestamp != nil {
return NoRequeue()
}
if isScaleFinished(*scaleOut.GetJobStatus()) {
return NoRequeue()
}
return setScalingOwner(r, scaleOut, r.PollInterval)
}
5.3 setScalingOwner
setScalingOwner 是关键之一。
这里主要是处理当 ScaleOut CR 没有设置 OwnerReferences 的情况,就设置一个。
逻辑是 根据 ScaleOut CR 中的 Selector 字段,找到 Scaler 对应的 TrainingJob,设置到 CR 的 OwnerReferences 上。
func setScalingOwner(r client.Client, scaler Scaler, pollInterval time.Duration) (ctrl.Result, error) {
ownerRefs := scaler.GetOwnerReferences()
if len(ownerRefs) == 0 {
trainingJob := &kaiv1alpha1.TrainingJob{}
nsn := types.NamespacedName{}
nsn.Namespace = scaler.GetNamespace()
nsn.Name = scaler.GetSelector().Name
err := r.Get(context.Background(), nsn, trainingJob)
gvk := kaiv1alpha1.SchemeGroupVersionKind
ownerRefs = append(ownerRefs, *metav1.NewControllerRef(trainingJob, schema.GroupVersionKind{Group: gvk.Group, Version: gvk.Version, Kind: gvk.Kind}))
scaler.SetOwnerReferences(ownerRefs)
initializeJobStatus(scaler.GetJobStatus())
updateJobConditions(scaler.GetJobStatus(), v1.JobCreated, "", msg)
err = r.Status().Update(context.Background(), scaler)
err = r.Update(context.Background(), scaler)
}
return NoRequeue()
}
func RequeueAfterInterval(interval time.Duration, err error) (ctrl.Result, error) {
return ctrl.Result{RequeueAfter: interval}, err
}
5.4 TrainingJobController
TrainingJobController 中监听到属于 TrainingJob 的 ScaleOut CR 有更新, 触发 TrainingJob 的 Reconcile,遍历过滤 TrainingJob 下 OwnerReference 指向的 ScaleIn 和 ScaleOut, 根据创建时间和状态时间决定执行的扩容或者缩容。
5.4.1 Reconcile
func (r *TrainingJobReconciler) Reconcile(req ctrl.Request) (ctrl.Result, error) {
rlog := r.Log.WithValues("trainingjob", req.NamespacedName)
sharedTrainingJob := &kaiv1alpha1.TrainingJob{}
err := r.Get(context.Background(), req.NamespacedName, sharedTrainingJob)
trainingJob := sharedTrainingJob.DeepCopy()
r.Scheme.Default(trainingJob)
return r.ReconcileJobs(trainingJob)
}
5.4.2 ReconcileJobs
func (r *TrainingJobReconciler) ReconcileJobs(job *kaiv1alpha1.TrainingJob) (result reconcile.Result, err error) {
oldJobStatus := job.Status.DeepCopy()
logger.Infof("jobName: %v, phase %s", job.Name, job.Status.Phase)
defer func() {
latestJob := &kaiv1alpha1.TrainingJob{}
err := r.Get(context.Background(), types.NamespacedName{
Name: job.Name,
Namespace: job.Namespace,
}, latestJob)
if err == nil {
if latestJob.ObjectMeta.ResourceVersion != job.ObjectMeta.ResourceVersion {
latestJob.Status = job.Status
job = latestJob
}
}
r.updateObjectStatus(job, oldJobStatus)
}()
switch job.Status.Phase {
case commonv1.JobSucceeded, commonv1.JobFailed:
err = r.cleanup(job)
case "", commonv1.JobCreated:
r.initializeJob(job)
err = r.reconcileResource(job)
case commonv1.JobRunning:
err = r.reconcileJobRunning(job)
case commonv1.Scaling:
err = r.executeScaling(job)
default:
logger.Warnf("job %s unknown status %s", job.Name, job.Status.Phase)
}
if err != nil {
if IsRequeueError(err) {
return RequeueAfterInterval(r.PollInterval, nil)
}
return RequeueAfterInterval(r.PollInterval, err)
}
return NoRequeue()
}
以下根据当前 job 状态不同,就有两条线,先是 JobRunning ,然后是 Scaling,最后恢复成 JobRunning。
我们一一分析。
5.5 JobRunning
首先是来到 JobRunning 状态,我们依次看看如何处理。
5.5.1 reconcileJobRunning
func (r *TrainingJobReconciler) reconcileJobRunning(job *kaiv1alpha1.TrainingJob) error {
if err := r.syncLauncherState(job); err != nil {
return err
}
if err := r.syncWorkersState(job); err != nil {
return err
}
if job.Status.Phase == commonv1.JobRunning {
return r.setTrainingJobScaler(job)
}
return nil
}
5.5.2 setTrainingJobScaler
首先,通过 availableScaleOutList 或者 availableScaleInList ,然后进行update。
func (r *TrainingJobReconciler) setTrainingJobScaler(job *kaiv1alpha1.TrainingJob) error {
scaleOut, err := r.availableScaleOutList(job)
scaleIn, err := r.availableScaleInList(job)
scalerList := append(scaleOut, scaleIn...)
r.updateLatestScaler(job, scalerList)
return nil
}
5.5.3 updateLatestScaler
依据创建时间和状态时间,找到最后一个Scaler。
func (r *TrainingJobReconciler) updateLatestScaler(job *kaiv1alpha1.TrainingJob, scalers []Scaler) error {
var latestScaler Scaler
if len(scalers) == 0 {
return nil
}
for i, _ := range scalers {
scalerItem := scalers[i]
if latestScaler == nil || latestScaler.GetCreationTimestamp().Time.Before(scalerItem.GetCreationTimestamp().Time) {
latestScaler = scalerItem
}
}
return r.updateCurrentScaler(job, latestScaler)
}
5.5.4 updateCurrentScaler
对找到的scaler进行设置。
func (r *TrainingJobReconciler) updateCurrentScaler(job *kaiv1alpha1.TrainingJob, scaleItem Scaler) error {
job.Status.CurrentScaler = scaleItem.GetFullName()
msg := fmt.Sprintf("trainingJobob(%s/%s) execute %s", job.Namespace, job.Name, scaleItem.GetFullName())
r.updateScalerState(scaleItem, job, newCondition(common.Scaling, scalingStartReason, msg))
if err := r.updateObjectStatus(scaleItem, nil); err != nil {
return err
}
return nil
}
5.5.5 updateScalerState
这时候会设置 common.Scaling。所以下次运行,会到 Scaling 分支。
func (r *TrainingJobReconciler) updateScalerState(scaleObj Scaler, trainingJob *kaiv1alpha1.TrainingJob, condition common.JobCondition) error {
jobPhase := common.Scaling
currentJob := scaleObj.GetFullName()
if condition.Type == common.ScaleSucceeded || condition.Type == common.ScaleFailed {
jobPhase = common.JobRunning
currentJob = ""
}
setCondition(trainingJob.GetJobStatus(), condition)
updateStatusPhase(trainingJob.GetJobStatus(), jobPhase)
updateTrainingJobCurrentScaler(trainingJob.GetJobStatus(), currentJob)
setCondition(scaleObj.GetJobStatus(), condition)
updateStatusPhase(scaleObj.GetJobStatus(), condition.Type)
return nil
}
逻辑如下:
1 Request("")
K8S +--------------------> Reconcile <------------------+
2 ScaleOut CR + |
K8S +--------------------> | |
| |
v |
+----------------------+---------------------+ |
| ReconcileJobs | |
| + | |
| | | |
| +------------------------------+ | |
| 1 | | 2 3 | | |
| v v v | |
| "", JobCreated JobRunning Scaling | |
+--------+-------------+---------------------+ |
| | |
1 | | 2 |
v v |
reconcileResource reconcileJobRunning |
+ + |
1 | | 2 |
| | |
v v |
+--------------------+----+ setTrainingJobScaler |
| doSteps | + |
| | | 2 |
| | | |
| WorkersCreated | v |
| | updateScalerState |
| | + |
| WorkersReady | | |
| | | 2 |
| | v |
| LauncherCreated | common.Scaling |
| | + |
| | | |
| JobRunning | | 2 |
| | | |
+-------------------------+ +-------------------------+
5.6 Scaling
5.6.1 executeScaling
依据 scale 的类型不同,进行不同扩展。
func (r *TrainingJobReconciler) executeScaling(job *kaiv1alpha1.TrainingJob) error {
if err := r.syncLauncherState(job); err != nil {
return err
}
if job.Status.CurrentScaler == "" {
updateStatusPhase(job.GetJobStatus(), common.JobRunning)
return nil
}
if isFinished(*job.GetJobStatus()) {
return nil
}
scalerType, scalerName := getScalerName(job.Status.CurrentScaler)
if scalerType == "ScaleIn" {
scaleIn, err := getScaleIn(scalerName, r)
if scaleIn == nil || isScaleFinished(*scaleIn.GetJobStatus()) {
finishTrainingScaler(job.GetJobStatus())
return nil
}
oldStatus := scaleIn.Status.DeepCopy()
defer r.updateObjectStatus(scaleIn, oldStatus)
if err = r.executeScaleIn(job, scaleIn); err != nil {
return err
}
} else if scalerType == "ScaleOut" {
scaleOut, err := getScaleOut(scalerName, r)
if scaleOut == nil || isScaleFinished(*scaleOut.GetJobStatus()) {
finishTrainingScaler(job.GetJobStatus())
return nil
}
oldStatus := scaleOut.Status.DeepCopy()
defer r.updateObjectStatus(scaleOut, oldStatus)
if err = r.executeScaleOut(job, scaleOut); err != nil {
}
}
return nil
}
5.6.2 executeScaleOut
进行扩展。
- 使用 setScaleOutWorkers 对 scaleOut.Status.AddPods 进行添加新 pods。
- 使用 workersAfterScaler 得到 最终的 worker。
- 使用 executeScaleScript 进行scale 操作。
func (r *TrainingJobReconciler) executeScaleOut(job *kaiv1alpha1.TrainingJob, scaleOut *kaiv1alpha1.ScaleOut) error {
initializeJobStatus(scaleOut.GetJobStatus())
if err := r.validateScaleOut(scaleOut); err != nil {
r.updateScalerFailed(scaleOut, job, err.Error())
return err
}
if err := r.setScaleOutWorkers(job, scaleOut); err != nil {
return err
}
err := r.ScaleOutWorkers(job, scaleOut)
if err != nil {
msg := fmt.Sprintf("%s create scaleout workers failed, error: %v", scaleOut.GetFullName(), err)
r.ScaleOutFailed(job, scaleOut, msg)
return err
}
scaleOutWorkers, err := r.getScalerOutWorkers(job, scaleOut)
workerStatuses, _ := r.workerReplicasStatus(scaleOut.GetJobStatus(), scaleOutWorkers)
if workerStatuses.Active < *scaleOut.Spec.ToAdd.Count {
if IsScaleOutTimeout(scaleOut) {
msg := fmt.Sprintf("scaleout job %s execution timeout", scaleOut.GetFullName())
r.ScaleOutFailed(job, scaleOut, msg)
}
return NewRequeueError(fmt.Errorf("wait for workers running"))
}
hostWorkers := r.workersAfterScaler(job.Status.CurrentWorkers, scaleOut)
if err := r.executeScaleScript(job, scaleOut, hostWorkers); err != nil {
msg := fmt.Sprintf("%s execute script failed, error: %v", scaleOut.GetFullName(), err)
r.ScaleOutFailed(job, scaleOut, msg)
return err
} else {
job.Status.TargetWorkers = r.workersAfterScaler(job.Status.TargetWorkers, scaleOut)
r.updateScalerSuccessd(scaleOut, job)
}
return nil
}
5.6.3 executeScaleScript
这时候调用 hostfileUpdateScript,更新 host file;
最终调用 executeOnLauncher执行脚本。
func (r *TrainingJobReconciler) executeScaleScript(trainingJob *kaiv1alpha1.TrainingJob, scaler Scaler, workers []string) error {
if isScriptExecuted(*scaler.GetJobStatus()) {
return nil
}
msg := fmt.Sprintf("trainingjob(%s/%s): execute script on launcher for %s", trainingJob.Namespace, trainingJob.Name, scaler.GetFullName())
slots := getSlots(trainingJob)
scriptSpec := scaler.GetScriptSpec()
var script string
if scriptSpec.Script != "" {
script = scalerScript(scriptSpec.GetTimeout(), scriptSpec.Env, scriptSpec.Script, scaler.GetPodNames(), slots)
} else {
hostfilePath := getHostfilePath(trainingJob)
script = hostfileUpdateScript(hostfilePath, workers, slots)
}
_, _, err := r.executeOnLauncher(trainingJob, script)
updateJobConditions(scaler.GetJobStatus(), common.ScriptExecuted, "", msg)
return nil
}
5.6.3.1 hostfileUpdateScript
得到最终的脚本string。
func hostfileUpdateScript(hostfile string, workers []string, slot int) string {
return fmt.Sprintf(
`echo '%s' > %s`, getHostfileContent(workers, slot), hostfile)
}
5.6.3.2 getHostfileContent
获取host file内容
func getHostfileContent(workers []string, slot int) string {
var buffer bytes.Buffer
for _, worker := range workers {
buffer.WriteString(fmt.Sprintf("%s:%d\n", worker, slot))
}
return buffer.String()
}
5.6.3.3 executeOnLauncher
在pod上执行
func (r *TrainingJobReconciler) executeOnLauncher(trainingJob *kaiv1alpha1.TrainingJob, script string) (string, string, error) {
var err error
var launcherPod *corev1.Pod
if launcherPod, err = r.GetLauncherJob(trainingJob); err != nil {
}
if launcherPod != nil {
stdOut, stdErr, err := kubectlOnPod(launcherPod, script)
return stdOut, stdErr, nil
}
return "", "", nil
}
5.6.3.4 kubectlOnPod
拉动 worker。
func kubectlOnPod(pod *corev1.Pod, cmd string) (string, string, error) {
cmds := []string{
"/bin/sh",
"-c",
cmd,
}
stdout, stderr, err := util.ExecCommandInContainerWithFullOutput(pod.Name, pod.Spec.Containers[0].Name, pod.Namespace, cmds)
if err != nil {
return stdout, stderr, err
}
return stdout, stderr, nil
}
逻辑如下:
1 Request("")
K8S +--------------------> Reconcile <------------------+
2 ScaleOut CR + |
K8S +--------------------> | |
| |
v |
+----------------------+---------------------+ |
| ReconcileJobs | |
| + | |
| | | |
| +------------------------------+ | |
| 1 | | 2 3 | | |
| v v v | | 3
| "", JobCreated JobRunning Scaling +-----------> executeScaling
+--------+-------------+---------------------+ | +
| | | |
1 | | 2 | | 3
v v | v
reconcileResource reconcileJobRunning | executeScaleOut
+ + | +
1 | | 2 | |
| | | | 3
v v | v
+--------------------+----+ setTrainingJobScaler | executeScaleScript
| doSteps | + | +
| | | 2 | |
| | | | | 3
| WorkersCreated | v | v
| | updateScalerState | hostfileUpdateScript
| | + | +
| WorkersReady | | | | 3
| | | 2 | |
| | v | v
| LauncherCreated | common.Scaling | executeOnLauncher
| | + | +
| | | | |
| JobRunning | | 2 | | 3
| | | | v
+-------------------------+ +-------------------------+ kubectlOnPod
0x06 ScaleIn
6.1 思路
ScaleIn 任务 CR如下:
执行缩容时,可以通过 ScaleIn CR 中的 spec.toDelete.count 或 spec.toDelete.podNames 字段指定缩容的 worker。
通过 count 配置缩容的数量,则通过 index 计算由高到低缩容 Worker。
apiVersion: kai.alibabacloud.com/v1alpha1
kind: ScaleIn
metadata:
name: scalein-workers
spec:
selector:
name: elastic-training
toDelete:
count: 1
如果想要缩容特定的 Worker,可以配置 podNames:
apiVersion: kai.alibabacloud.com/v1alpha1
kind: ScaleIn
metadata:
name: scalein-workers
spec:
selector:
name: elastic-training
toDelete:
podNames:
- elastic-training-worker-1
运行一个缩容示例,指定数量缩容 1 个 worker:
kubectl create -f examples/scale_in_count.yaml
6.2 Reconcile
当下发一个 scaleInCR,Controller 触发 Reconcile。主要就是调用 setScalingOwner。
func (r *ScaleInReconciler) Reconcile(req ctrl.Request) (ctrl.Result, error) {
scaleIn, err := getScaleIn(req.NamespacedName, r.Client)
if isScaleFinished(*scaleIn.GetJobStatus()) {
return NoRequeue()
}
return setScalingOwner(r, scaleIn, r.PollInterval)
}
6.3 setScalingOwner
setScalingOwner 是关键之一。
这里主要是处理当 ScaleIn CR 没有设置 OwnerReferences 的情况,就设置一个。
逻辑是 根据 ScaleIn CR 中的 Selector 字段,找到 Scaler 对应的 TrainingJob,设置到 CR 的 OwnerReferences 上。
下面移除各种错误检查代码。
func setScalingOwner(r client.Client, scaler Scaler, pollInterval time.Duration) (ctrl.Result, error) {
ownerRefs := scaler.GetOwnerReferences()
if len(ownerRefs) == 0 {
trainingJob := &kaiv1alpha1.TrainingJob{}
nsn := types.NamespacedName{}
nsn.Namespace = scaler.GetNamespace()
nsn.Name = scaler.GetSelector().Name
err := r.Get(context.Background(), nsn, trainingJob)
gvk := kaiv1alpha1.SchemeGroupVersionKind
ownerRefs = append(ownerRefs, *metav1.NewControllerRef(trainingJob, schema.GroupVersionKind{Group: gvk.Group, Version: gvk.Version, Kind: gvk.Kind}))
scaler.SetOwnerReferences(ownerRefs)
initializeJobStatus(scaler.GetJobStatus())
updateJobConditions(scaler.GetJobStatus(), v1.JobCreated, "", msg)
err = r.Status().Update(context.Background(), scaler)
err = r.Update(context.Background(), scaler)
}
return NoRequeue()
}
6.4 executeScaleIn
JobRunning 状态处理与 ScaleOut类似,所以略过,直接看处理executeScaleIn。
执行缩容时,可以通过 ScaleIn CR 中的 spec.toDelete.count 或 spec.toDelete.podNames 字段指定缩容的 worker。
通过 count 配置缩容的数量,则通过 index 计算由高到低缩容 Worker。
具体结合代码就是:
setsSaleInToDelete 指定哪些需要删除;
executeScaleScript 执行脚本;
DeleteWorkers 删除 worker;
func (r *TrainingJobReconciler) executeScaleIn(job *kaiv1alpha1.TrainingJob, scaleIn *kaiv1alpha1.ScaleIn) error {
if scaleIn.DeletionTimestamp != nil || isScaleFinished(*scaleIn.GetJobStatus()) {
logger.Info("reconcile cancelled, scalein does not need to do reconcile or has been deleted")
return nil
}
initializeJobStatus(scaleIn.GetJobStatus())
err := r.setsSaleInToDelete(job, scaleIn)
currentWorkers := r.workersAfterScaler(job.Status.CurrentWorkers, scaleIn)
if err := r.executeScaleScript(job, scaleIn, currentWorkers); err != nil {
msg := fmt.Sprintf("%s execute script failed, error: %v", scaleIn.GetFullName(), err)
r.updateScalerFailed(scaleIn, job, msg)
return nil
}
toDeleteWorkers := scaleIn.GetPodNames()
remainWorkers := false
if scaleIn.Spec.Script == "" {
if shutdownWorkers, err := r.checkWorkerShutdown(job, toDeleteWorkers); err != nil {
return err
} else {
if len(toDeleteWorkers) != len(shutdownWorkers) {
remainWorkers = true
toDeleteWorkers = shutdownWorkers
}
}
}
if err := r.DeleteWorkers(job, toDeleteWorkers); err != nil {
msg := fmt.Sprintf("%s delete resource failed, error: %v", scaleIn.GetFullName(), err)
r.updateScalerFailed(scaleIn, job, msg)
return nil
}
deleted, _ := r.isWorkersDeleted(job.Namespace, scaleIn.GetPodNames())
if deleted {
job.Status.TargetWorkers = r.workersAfterScaler(job.Status.TargetWorkers, scaleIn)
job.Status.CurrentWorkers = currentWorkers
r.updateScalerSuccessd(scaleIn, job)
return nil
}
if remainWorkers {
msg := "wait for workers process shutdown"
logger.Info(msg)
return NewRequeueError(fmt.Errorf(msg))
}
return nil
}
6.5 setsSaleInToDelete
通过 ScaleIn CR 中的 spec.toDelete.count 或 spec.toDelete.podNames 字段指定缩容的 worker。
func (r *TrainingJobReconciler) setsSaleInToDelete(job *kaiv1alpha1.TrainingJob, scaleIn *kaiv1alpha1.ScaleIn) error {
podNames := scaleIn.Status.ToDeletePods
if len(podNames) != 0 {
return nil
}
workers, err := r.GetWorkerPods(job)
toDelete := scaleIn.Spec.ToDelete
if toDelete.PodNames != nil {
workers = filterPodNames(workers, toDelete.PodNames, false)
} else if toDelete.Count > 0 {
if toDelete.Count < len(workers) {
allPodNames := getSortPodNames(job.Name, workers)
deletePodNames := allPodNames[len(workers)-toDelete.Count:]
workers = filterPodNames(workers, deletePodNames, false)
}
}
for _, worker := range workers {
scaleIn.Status.ToDeletePods = append(scaleIn.Status.ToDeletePods, worker.Name)
}
return nil
}
6.6 DeleteWorkers
具体删除worker service 和 pods。
func (r *TrainingJobReconciler) DeleteWorkers(trainingJob *kaiv1alpha1.TrainingJob, workers []string) error {
if err := r.DeleteWorkerServices(trainingJob, workers); err != nil {
return fmt.Errorf("delete services failed: %++v", err)
}
if err := r.DeleteWorkerPods(trainingJob, workers); err != nil {
return fmt.Errorf("delete pods failed: %++v", err)
}
return nil
}
6.7 DeleteWorkerPods
删除pods。
func (r *TrainingJobReconciler) DeleteWorkerPods(job *kaiv1alpha1.TrainingJob, pods []string) error {
workerPods, err := r.GetWorkerPods(job)
if pods != nil {
workerPods = filterPodNames(workerPods, pods, false)
}
for _, pod := range workerPods {
deleteOptions := &client.DeleteOptions{GracePeriodSeconds: utilpointer.Int64Ptr(0)}
if err := r.Delete(context.Background(), &pod, deleteOptions); err != nil && !errors.IsNotFound(err) {
r.recorder.Eventf(job, corev1.EventTypeWarning, trainingJobFailedReason, "Error deleting worker %s: %v", pod.Name, err)
}
r.recorder.Eventf(job, corev1.EventTypeNormal, trainingJobSucceededReason, "Deleted pod %s", pod.Name)
}
return nil
}
具体逻辑如下:
1 Request("")
K8S-----------------> Reconcile <------------------+
2 ScaleOut CR + |
K8S-----------------> | |
| |
v |
+----------------------+---------------------+ |
| ReconcileJobs | |
| + | |
| | | |
| +------------------------------+ | |
| 1 | | 2 3 | | |
| v v v | | 3
| "", JobCreated JobRunning Scaling +---------> executeScaling -----+
+--------+-------------+---------------------+ | + |
| | | | |
1 | | 2 | | 3 | 4
v v | v v
reconcileResource reconcileJobRunning | executeScaleOut executeScaleIn
+ + | + +
1 | | 2 | | |
| | | | 3 | 4
v v | v v
+------------+--------+ setTrainingJobScaler | executeScaleScript executeScaleScript
| doSteps | + | + +
| | | 2 | | |
| | | | | 3 | 4
| WorkersCreated | v | v v
| | updateScalerState | hostfileUpdateScript DeleteWorkers
| | + | + +
| WorkersReady | | | | 3 | 4
| | | 2 | | |
| | v | v v
| LauncherCreated | common.Scaling | executeOnLauncher DeleteWorkerPods
| | + | + +
| | | | | |
| JobRunning | | 2 | | 3 | 4
| | | | v v
+---------------------+ +-------------------------+ kubectlOnPod Delete
至此,Horovod系列分析完毕,下一篇开始分析参数服务器,敬请期待。
0xEE 个人信息
★★★★★★关于生活和技术的思考★★★★★★
微信公众账号:罗西的思考
如果您想及时得到个人撰写文章的消息推送,或者想看看个人推荐的技术资料,敬请关注。
0xFF 参考
ElasticDL 分析
在 Kubernetes 上弹性深度学习训练利器 – Elastic Training Operator
|