这个任务是自己在项目中数据处理的一部分内容,待处理的图片如下所示: 我需要将目标区域给裁剪出来,要不然在后期训练网络的时候整幅图像过大,且目标区域过小,得到结果不好,还会加剧计算量。在网上找了各个大佬的博客看,没找到合适的,便自己动手写了,顺便自己的小破站刚搭建起来,记录一下自己的思路。
思路
去寻找目标区域的最左边,最右边,最上面和最下面的像素点,取到坐标信息以后用CV2的裁剪一下就可以实现了。 #难点 数据总共是11952张图片,每张图片是1024*768大小的,依次去遍历的话担心太费时间了,结果还好,图像中黑色的像素点值为0,计算量比想象的要小很多 #代码
import cv2
"""
使用OpenCV截取图片
"""
def search(path):
left = 1024
right = 0
upper = 768
lower = 0
img = cv2.imread(path)[:,:,0]
# print(img.shape)
for i in range(768):
for j in range(1024):
if img[i,j] != 0 :
# print(img[i,j])
left = min(j,left)
right = max(j,right)
lower = max(i,lower)
upper = min(i,upper)
return (left,upper,right,lower)
def image_cut_save(path, left, upper, right, lower, save_path):
"""
所截区域图片保存
:param path: 图片路径
:param left: 区块左上角位置的像素点离图片左边界的距离
:param upper:区块左上角位置的像素点离图片上边界的距离
:param right:区块右下角位置的像素点离图片左边界的距离
:param lower:区块右下角位置的像素点离图片上边界的距离
故需满足:lower > upper、right > left
:param save_path: 所截图片保存位置
"""
img = cv2.imread(path) # 打开图像
cropped = img[upper:lower, left:right]
# 保存截取的图片
cv2.imwrite(save_path, cropped)
if __name__ == '__main__':
root_path = r'原图片的路径'
save_path = r'裁剪后的图片保存的路径'
images = os.listdir(root_path)
for image in images:
# print(image)
pic_path = os.path.join(root_path,image)
# print(pic_path)
pic_save_dir_path = os.path.join(save_path,image)
print(pic_save_dir_path)
left, upper, right, lower = search(pic_path)
# show_cut(pic_path, left, upper, right, lower)
image_cut_save(pic_path, left, upper, right, lower, pic_save_dir_path)
结果
裁剪后的图像如下
|