| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> Building deep retrieval models -> 正文阅读 |
|
[人工智能]Building deep retrieval models |
In the featurization tutorial we incorporated multiple features into our models, but the models consist of only an embedding layer. We can add more dense layers to our models to increase their expressive power. In general, deeper models are capable of learning more complex patterns than shallower models. For example, our user model incorporates user ids and timestamps to model user preferences at a point in time. A shallow model (say, a single embedding layer) may only be able to learn the simplest relationships between those features and movies: a given movie is most popular around the time of its release, and a given user generally prefers horror movies to comedies. To capture more complex relationships, such as user preferences evolving over time, we may need a deeper model with multiple stacked dense layers. Of course, complex models also have their disadvantages. The first is computational cost, as larger models require both more memory and more computation to fit and serve. The second is the requirement for more data: in general, more training data is needed to take advantage of deeper models. With more parameters, deep models might overfit or even simply memorize the training examples instead of learning a function that can generalize. Finally, training deeper models may be harder, and more care needs to be taken in choosing settings like regularization and learning rate. Finding a good architecture for a real-world recommender system is a complex art, requiring good intuition and careful hyperparameter tuning. For example, factors such as the depth and width of the model, activation function, learning rate, and optimizer can radically change the performance of the model. Modelling choices are further complicated by the fact that good offline evaluation metrics may not correspond to good online performance, and that the choice of what to optimize for is often more critical than the choice of model itself. Nevertheless, effort put into building and fine-tuning larger models often pays off. In this tutorial, we will illustrate how to build deep retrieval models using TensorFlow Recommenders. We'll do this by building progressively more complex models to see how this affects model performance. import os import tempfile ? %matplotlib inline import matplotlib.pyplot as plt ? import numpy as np import tensorflow as tf import tensorflow_datasets as tfds ? import tensorflow_recommenders as tfrs ? plt.style.use('seaborn-whitegrid') In this tutorial we will use the models from the featurization tutorial to generate embeddings. Hence we will only be using the user id, timestamp, and movie title features. ratings = tfds.load("movielens/100k-ratings", split="train") movies = tfds.load("movielens/100k-movies", split="train") ? ratings = ratings.map(lambda x: { ? "movie_title": x["movie_title"], ? "user_id": x["user_id"], ? "timestamp": x["timestamp"], }) movies = movies.map(lambda x: x["movie_title"]) We also do some housekeeping to prepare feature vocabularies. timestamps = np.concatenate(list(ratings.map(lambda x: x["timestamp"]).batch(100))) ? max_timestamp = timestamps.max() min_timestamp = timestamps.min() ? timestamp_buckets = np.linspace( ? min_timestamp, max_timestamp, num=1000, ) ? unique_movie_titles = np.unique(np.concatenate(list(movies.batch(1000)))) unique_user_ids = np.unique(np.concatenate(list(ratings.batch(1_000).map( ? lambda x: x["user_id"])))) Model definitionQuery modelWe start with the user model defined in the featurization tutorial as the first layer of our model, tasked with converting raw input examples into feature embeddings. class UserModel(tf.keras.Model): ? def __init__(self): ? super().__init__() ? ? self.user_embedding = tf.keras.Sequential([ ? ? ? tf.keras.layers.experimental.preprocessing.StringLookup( ? ? ? ? ? vocabulary=unique_user_ids, mask_token=None), ? ? ? tf.keras.layers.Embedding(len(unique_user_ids) + 1, 32), ? ]) ? self.timestamp_embedding = tf.keras.Sequential([ ? ? ? tf.keras.layers.experimental.preprocessing.Discretization(timestamp_buckets.tolist()), ? ? ? tf.keras.layers.Embedding(len(timestamp_buckets) + 1, 32), ? ]) ? self.normalized_timestamp = tf.keras.layers.experimental.preprocessing.Normalization() ? ? self.normalized_timestamp.adapt(timestamps) ? def call(self, inputs): ? # Take the input dictionary, pass it through each input layer, ? # and concatenate the result. ? return tf.concat([ ? ? ? self.user_embedding(inputs["user_id"]), ? ? ? self.timestamp_embedding(inputs["timestamp"]), ? ? ? self.normalized_timestamp(inputs["timestamp"]), ? ], axis=1) Defining deeper models will require us to stack mode layers on top of this first input. A progressively narrower stack of layers, separated by an activation function, is a common pattern: ? ? ? ? ? ? ? ? ? ? ? ? ? +----------------------+ ? ? ? ? ? ? ? ? ? ? ? ? ? | ? ? 128 x 64 ? ? ? | ? ? ? ? ? ? ? ? ? ? ? ? ? +----------------------+ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? | relu ? ? ? ? ? ? ? ? ? ? ? ? +--------------------------+ ? ? ? ? ? ? ? ? ? ? ? ? | ? ? ? 256 x 128 ? ? ? ? | ? ? ? ? ? ? ? ? ? ? ? ? +--------------------------+ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? | relu ? ? ? ? ? ? ? ? ? ? ? +------------------------------+ ? ? ? ? ? ? ? ? ? ? ? | ? ? ? ? ... x 256 ? ? ? ? ? | ? ? ? ? ? ? ? ? ? ? ? +------------------------------+ Since the expressive power of deep linear models is no greater than that of shallow linear models, we use ReLU activations for all but the last hidden layer. The final hidden layer does not use any activation function: using an activation function would limit the output space of the final embeddings and might negatively impact the performance of the model. For instance, if ReLUs are used in the projection layer, all components in the output embedding would be non-negative. We're going to try something similar here. To make experimentation with different depths easy, let's define a model whose depth (and width) is defined by a set of constructor parameters. class QueryModel(tf.keras.Model): """Model for encoding user queries.""" ? def __init__(self, layer_sizes): ? """Model for encoding user queries. ? ? Args: ? ? layer_sizes: ? ? ? A list of integers where the i-th entry represents the number of units ? ? ? the i-th layer contains. ? """ ? super().__init__() ? ? # We first use the user model for generating embeddings. ? self.embedding_model = UserModel() ? ? # Then construct the layers. ? self.dense_layers = tf.keras.Sequential() ? ? # Use the ReLU activation for all but the last layer. ? for layer_size in layer_sizes[:-1]: ? ? self.dense_layers.add(tf.keras.layers.Dense(layer_size, activation="relu")) ? ? # No activation for the last layer. ? for layer_size in layer_sizes[-1:]: ? ? self.dense_layers.add(tf.keras.layers.Dense(layer_size)) ? def call(self, inputs): ? feature_embedding = self.embedding_model(inputs) ? return self.dense_layers(feature_embedding) The layer_sizes parameter gives us the depth and width of the model. We can vary it to experiment with shallower or deeper models. Candidate modelWe can adopt the same approach for the movie model. Again, we start with the MovieModel from the featurization tutorial: class MovieModel(tf.keras.Model): ? def __init__(self): ? super().__init__() ? ? max_tokens = 10_000 ? ? self.title_embedding = tf.keras.Sequential([ ? ? tf.keras.layers.experimental.preprocessing.StringLookup( ? ? ? ? vocabulary=unique_movie_titles,mask_token=None), ? ? tf.keras.layers.Embedding(len(unique_movie_titles) + 1, 32) ? ]) ? ? self.title_vectorizer = tf.keras.layers.experimental.preprocessing.TextVectorization( ? ? ? max_tokens=max_tokens) ? ? self.title_text_embedding = tf.keras.Sequential([ ? ? self.title_vectorizer, ? ? tf.keras.layers.Embedding(max_tokens, 32, mask_zero=True), ? ? tf.keras.layers.GlobalAveragePooling1D(), ? ]) ? ? self.title_vectorizer.adapt(movies) ? def call(self, titles): ? return tf.concat([ ? ? ? self.title_embedding(titles), ? ? ? self.title_text_embedding(titles), ? ], axis=1) And expand it with hidden layers: class CandidateModel(tf.keras.Model): """Model for encoding movies.""" ? def __init__(self, layer_sizes): ? """Model for encoding movies. ? ? Args: ? ? layer_sizes: ? ? ? A list of integers where the i-th entry represents the number of units ? ? ? the i-th layer contains. ? """ ? super().__init__() ? ? self.embedding_model = MovieModel() ? ? # Then construct the layers. ? self.dense_layers = tf.keras.Sequential() ? ? # Use the ReLU activation for all but the last layer. ? for layer_size in layer_sizes[:-1]: ? ? self.dense_layers.add(tf.keras.layers.Dense(layer_size, activation="relu")) ? ? # No activation for the last layer. ? for layer_size in layer_sizes[-1:]: ? ? self.dense_layers.add(tf.keras.layers.Dense(layer_size)) ? def call(self, inputs): ? feature_embedding = self.embedding_model(inputs) ? return self.dense_layers(feature_embedding) Combined modelWith both QueryModel and CandidateModel defined, we can put together a combined model and implement our loss and metrics logic. To make things simple, we'll enforce that the model structure is the same across the query and candidate models. class MovielensModel(tfrs.models.Model): ? def __init__(self, layer_sizes): ? super().__init__() ? self.query_model = QueryModel(layer_sizes) ? self.candidate_model = CandidateModel(layer_sizes) ? self.task = tfrs.tasks.Retrieval( ? ? ? metrics=tfrs.metrics.FactorizedTopK( ? ? ? ? ? candidates=movies.batch(128).map(self.candidate_model), ? ? ? ), ? ) ? def compute_loss(self, features, training=False): ? # We only pass the user id and timestamp features into the query model. This ? # is to ensure that the training inputs would have the same keys as the ? # query inputs. Otherwise the discrepancy in input structure would cause an ? # error when loading the query model after saving it. ? query_embeddings = self.query_model({ ? ? ? "user_id": features["user_id"], ? ? ? "timestamp": features["timestamp"], ? }) ? movie_embeddings = self.candidate_model(features["movie_title"]) ? ? return self.task( ? ? ? query_embeddings, movie_embeddings, compute_metrics=not training) Training the modelPrepare the dataWe first split the data into a training set and a testing set. tf.random.set_seed(42) shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False) ? train = shuffled.take(80_000) test = shuffled.skip(80_000).take(20_000) ? cached_train = train.shuffle(100_000).batch(2048) cached_test = test.batch(4096).cache() Shallow modelWe're ready to try out our first, shallow, model! num_epochs = 300 ? model = MovielensModel([32]) model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1)) ? one_layer_history = model.fit( ? cached_train, ? validation_data=cached_test, ? validation_freq=5, ? epochs=num_epochs, ? verbose=0) ? accuracy = one_layer_history.history["val_factorized_top_k/top_100_categorical_accuracy"][-1] print(f"Top-100 accuracy: {accuracy:.2f}.") This gives us a top-100 accuracy of around 0.27. We can use this as a reference point for evaluating deeper models. Deeper modelWhat about a deeper model with two layers? model = MovielensModel([64, 32]) model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1)) ? two_layer_history = model.fit( ? cached_train, ? validation_data=cached_test, ? validation_freq=5, ? epochs=num_epochs, ? verbose=0) ? accuracy = two_layer_history.history["val_factorized_top_k/top_100_categorical_accuracy"][-1] print(f"Top-100 accuracy: {accuracy:.2f}.") The accuracy here is 0.29, quite a bit better than the shallow model. We can plot the validation accuracy curves to illustrate this: Even early on in the training, the larger model has a clear and stable lead over the shallow model, suggesting that adding depth helps the model capture more nuanced relationships in the data. However, even deeper models are not necessarily better. The following model extends the depth to three layers: model = MovielensModel([128, 64, 32]) model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1)) ? three_layer_history = model.fit( ? cached_train, ? validation_data=cached_test, ? validation_freq=5, ? epochs=num_epochs, ? verbose=0) ? accuracy = three_layer_history.history["val_factorized_top_k/top_100_categorical_accuracy"][-1] print(f"Top-100 accuracy: {accuracy:.2f}.") |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/17 20:45:34- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |