IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Introduction to the Keras Tuner -> 正文阅读

[人工智能]Introduction to the Keras Tuner

Overview

The Keras Tuner is a library that helps you pick the optimal set of hyperparameters for your TensorFlow program. The process of selecting the right set of hyperparameters for your machine learning (ML) application is called hyperparameter tuning or hypertuning.

Hyperparameters are the variables that govern the training process and the topology of an ML model. These variables remain constant over the training process and directly impact the performance of your ML program. Hyperparameters are of two types:

  1. Model hyperparameters which influence model selection such as the number and width of hidden layers

  2. Algorithm hyperparameters which influence the speed and quality of the learning algorithm such as the learning rate for Stochastic Gradient Descent (SGD) and the number of nearest neighbors for a k Nearest Neighbors (KNN) classifier

In this tutorial, you will use the Keras Tuner to perform hypertuning for an image classification application.

Setup

import tensorflow as tf
from tensorflow import keras
import keras_tuner as kt

Download and prepare the dataset

In this tutorial, you will use the Keras Tuner to find the best hyperparameters for a machine learning model that classifies images of clothing from the Fashion MNIST dataset.

Load the data.

(img_train, label_train), (img_test, label_test) = keras.datasets.fashion_mnist.load_data()
# Normalize pixel values between 0 and 1
img_train = img_train.astype('float32') / 255.0
img_test = img_test.astype('float32') / 255.0

Define the model

When you build a model for hypertuning, you also define the hyperparameter search space in addition to the model architecture. The model you set up for hypertuning is called a hypermodel.

You can define a hypermodel through two approaches:

  • By using a model builder function

  • By subclassing the HyperModel class of the Keras Tuner API

You can also use two pre-defined HyperModel classes - HyperXception and HyperResNet for computer vision applications.

In this tutorial, you use a model builder function to define the image classification model. The model builder function returns a compiled model and uses hyperparameters you define inline to hypertune the model.

def model_builder(hp):
  model = keras.Sequential()
  model.add(keras.layers.Flatten(input_shape=(28, 28)))
?
  # Tune the number of units in the first Dense layer
  # Choose an optimal value between 32-512
  hp_units = hp.Int('units', min_value=32, max_value=512, step=32)
  model.add(keras.layers.Dense(units=hp_units, activation='relu'))
  model.add(keras.layers.Dense(10))
?
  # Tune the learning rate for the optimizer
  # Choose an optimal value from 0.01, 0.001, or 0.0001
  hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])
?
  model.compile(optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
 ? ? ? ? ? ? ?  loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
 ? ? ? ? ? ? ?  metrics=['accuracy'])
?
  return model

Instantiate the tuner and perform hypertuning

Instantiate the tuner to perform the hypertuning. The Keras Tuner has four tuners available - RandomSearch, Hyperband, BayesianOptimization, and Sklearn. In this tutorial, you use the Hyperband tuner.

To instantiate the Hyperband tuner, you must specify the hypermodel, the objective to optimize and the maximum number of epochs to train (max_epochs).

tuner = kt.Hyperband(model_builder,
 ? ? ? ? ? ? ? ? ? ? objective='val_accuracy',
 ? ? ? ? ? ? ? ? ? ? max_epochs=10,
 ? ? ? ? ? ? ? ? ? ? factor=3,
 ? ? ? ? ? ? ? ? ? ? directory='my_dir',
 ? ? ? ? ? ? ? ? ? ? project_name='intro_to_kt')

The Hyperband tuning algorithm uses adaptive resource allocation and early-stopping to quickly converge on a high-performing model. This is done using a sports championship style bracket. The algorithm trains a large number of models for a few epochs and carries forward only the top-performing half of models to the next round. Hyperband determines the number of models to train in a bracket by computing 1 + logfactor(max_epochs) and rounding it up to the nearest integer.

Create a callback to stop training early after reaching a certain value for the validation loss.

stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)

Run the hyperparameter search. The arguments for the search method are the same as those used for tf.keras.model.fit in addition to the callback above.

tuner.search(img_train, label_train, epochs=50, validation_split=0.2, callbacks=[stop_early])
?
# Get the optimal hyperparameters
best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]
?
print(f"""
The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is {best_hps.get('units')} and the optimal learning rate for the optimizer
is {best_hps.get('learning_rate')}.
""")

Train the model

Find the optimal number of epochs to train the model with the hyperparameters obtained from the search.

# Build the model with the optimal hyperparameters and train it on the data for 50 epochs
model = tuner.hypermodel.build(best_hps)
history = model.fit(img_train, label_train, epochs=50, validation_split=0.2)
?
val_acc_per_epoch = history.history['val_accuracy']
best_epoch = val_acc_per_epoch.index(max(val_acc_per_epoch)) + 1
print('Best epoch: %d' % (best_epoch,))

Re-instantiate the hypermodel and train it with the optimal number of epochs from above.

hypermodel = tuner.hypermodel.build(best_hps)
?
# Retrain the model
hypermodel.fit(img_train, label_train, epochs=best_epoch, validation_split=0.2)

To finish this tutorial, evaluate the hypermodel on the test data.

eval_result = hypermodel.evaluate(img_test, label_test)
print("[test loss, test accuracy]:", eval_result)

The my_dir/intro_to_kt directory contains detailed logs and checkpoints for every trial (model configuration) run during the hyperparameter search. If you re-run the hyperparameter search, the Keras Tuner uses the existing state from these logs to resume the search. To disable this behavior, pass an additional overwrite=True argument while instantiating the tuner.

代码地址: https://codechina.csdn.net/csdn_codechina/enterprise_technology/-/blob/master/Hypertuner/Introduction%20to%20the%20Keras%20Tuner.ipynb

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-01 14:30:37  更:2021-08-01 14:31:54 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/22 10:43:52-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码