基于深度强化学习的绘画智能体 代码分析(二)
Github源码链接
critic.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.weight_norm as weightNorm
from torch.autograd import Variable
import sys
def conv3x3(in_planes, out_planes, stride=1):
return weightNorm(nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=True))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
coord = torch.zeros([1, 2, 64, 64])
for i in range(64):
for j in range(64):
coord[0, 0, i, j] = i / 63.
coord[0, 1, i, j] = j / 63.
coord = coord.to(device)
class TReLU(nn.Module):
def __init__(self)://初始化
super(TReLU, self).__init__()
self.alpha = nn.Parameter(torch.FloatTensor(1), requires_grad=True)
self.alpha.data.fill_(0)
def forward(self, x):
x = F.relu(x - self.alpha) + self.alpha
return x
def cfg(depth):
depth_lst = [18, 34, 50, 101, 152]
assert (depth in depth_lst), "Error : Resnet depth should be either 18, 34, 50, 101, 152"
cf_dict = {
'18': (BasicBlock, [2,2,2,2]),
'34': (BasicBlock, [3,4,6,3]),
'50': (Bottleneck, [3,4,6,3]),
'101':(Bottleneck, [3,4,23,3]),
'152':(Bottleneck, [3,8,36,3]),
}
return cf_dict[str(depth)]
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(in_planes, planes, stride)
self.conv2 = conv3x3(planes, planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
weightNorm(nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=True)),
)
self.relu_1 = TReLU()
self.relu_2 = TReLU()
def forward(self, x):
out = self.relu_1(self.conv1(x))
out = self.conv2(out)
out += self.shortcut(x)
out = self.relu_2(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = weightNorm(nn.Conv2d(in_planes, planes, kernel_size=1, bias=True))
self.conv2 = weightNorm(nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True))
self.conv3 = weightNorm(nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=True))
self.relu_1 = TReLU()
self.relu_2 = TReLU()
self.relu_3 = TReLU()
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
weightNorm(nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=True)),
)
def forward(self, x):
out = self.relu_1(self.conv1(x))
out = self.relu_2(self.conv2(out))
out = self.conv3(out)
out += self.shortcut(x)
out = self.relu_3(out)
return out
class ResNet_wobn(nn.Module):
def __init__(self, num_inputs, depth, num_outputs):
super(ResNet_wobn, self).__init__()
self.in_planes = 64
block, num_blocks = cfg(depth)
self.conv0 = conv3x3(num_inputs, 32, 2)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=2)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=1)
self.conv4 = weightNorm(nn.Conv2d(512, 1, 1, 1, 0))
self.relu_1 = TReLU()
self.conv1 = weightNorm(nn.Conv2d(65 + 2, 64, 1, 1, 0))
self.conv2 = weightNorm(nn.Conv2d(64, 64, 1, 1, 0))
self.conv3 = weightNorm(nn.Conv2d(64, 32, 1, 1, 0))
self.relu_2 = TReLU()
self.relu_3 = TReLU()
self.relu_4 = TReLU()
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def a2img(self, x):
tmp = coord.expand(x.shape[0], 2, 64, 64)
x = x.repeat(64, 64, 1, 1).permute(2, 3, 0, 1)
x = self.relu_2(self.conv1(torch.cat([x, tmp], 1)))
x = self.relu_3(self.conv2(x))
x = self.relu_4(self.conv3(x))
return x
def forward(self, input):
x, a = input
a = self.a2img(a)
x = self.relu_1(self.conv0(x))
x = torch.cat([x, a], 1)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.conv4(x)
return x.view(x.size(0), 64)
|