深度卷积生成对抗网络(DCGAN)
一、前言
🚀 我的环境:
🚀 深度学习新人必看:
- 小白入门深度学习 | 第一篇:配置深度学习环境
- 小白入门深度学习 | 第二篇:编译器的使用-Jupyter Notebook
- 小白入门深度学习 | 第三篇:深度学习初体验
🚀 卷积神经网络篇:
- 深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天
- 深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天
- 深度学习100例-卷积神经网络(CNN)服装图像分类 | 第3天
- 深度学习100例-卷积神经网络(CNN)花朵识别 | 第4天
- 深度学习100例-卷积神经网络(CNN)天气识别 | 第5天
- 深度学习100例-卷积神经网络(VGG-16)识别海贼王草帽一伙 | 第6天
- 深度学习100例-卷积神经网络(VGG-19)识别灵笼中的人物 | 第7天
- 深度学习100例-卷积神经网络(ResNet-50)鸟类识别 | 第8天
- 深度学习100例-卷积神经网络(AlexNet)手把手教学 | 第11天
- 深度学习100例-卷积神经网络(CNN)识别验证码 | 第12天
- 深度学习100例-卷积神经网络(Inception V3)识别手语 | 第13天
- 深度学习100例-卷积神经网络(Inception-ResNet-v2)识别交通标志 | 第14天
- 深度学习100例-卷积神经网络(CNN)实现车牌识别 | 第15天
- 深度学习100例-卷积神经网络(CNN)识别神奇宝贝小智一伙 | 第16天
- 深度学习100例-卷积神经网络(CNN)识别眼睛状态 | 第17天
🚀 循环神经网络篇:
- 深度学习100例-循环神经网络(RNN)实现股票预测 | 第9天
- 深度学习100例-循环神经网络(LSTM)实现股票预测 | 第10天
🚀 生成对抗网络篇:
- 深度学习100例-生成对抗网络(GAN)手写数字生成 | 第18天
🚀 本文选自专栏:《深度学习基础50例》 🚀 精选优质专栏:《夜深人静写算法》
二、什么是生成对抗网络?
生成对抗网络(GAN)是当今计算机科学领域最有趣的想法之一。两个模型通过对抗过程同时训练。一个生成器模型(“艺术家”)学习创造看起来真实的图像,而判别器模型(“艺术评论家”)学习区分真假图像。
GAN 的应用十分广泛,它的应用包括图像合成、风格迁移、照片修复以及照片编辑,数据增强等等。
1)风格迁移
图像风格迁移是将图像A的风格转换到图像B中去,得到新的图像。
2)图像生成
GAN 不但能生成人脸,还能生成其他类型的图片,比如漫画人物。
1. 设置GPU
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
tf.config.experimental.set_memory_growth(gpus[0], True)
tf.config.set_visible_devices([gpus[0]],"GPU")
print(gpus)
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
from tensorflow.keras import layers
from IPython import display
import matplotlib.pyplot as plt
import numpy as np
import glob,imageio,os,PIL,time
2. 加载和准备数据集
您将使用 MNIST 数据集来训练生成器和判别器。生成器将生成类似于 MNIST 数据集的手写数字。
(train_images, _), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = train_images / 127.5 - 1
BUFFER_SIZE = 60000
BATCH_SIZE = 256
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
三、创建模型
1. 生成器
生成器使用 tf.keras.layers.Conv2DTranspose (上采样)层来从种子(随机噪声)中产生图片。以一个使用该种子作为输入的 Dense 层开始,然后多次上采样直到达到所期望的 28x28x1 的图片尺寸。注意除了输出层使用 tanh 之外,其他每层均使用 tf.keras.layers.LeakyReLU 作为激活函数。
def make_generator_model():
model = tf.keras.Sequential([
layers.Dense(7*7*256, use_bias=False, input_shape=(100,)),
layers.BatchNormalization(),
layers.LeakyReLU(),
layers.Reshape((7, 7, 256)),
layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False),
layers.BatchNormalization(),
layers.LeakyReLU(),
layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False),
layers.BatchNormalization(),
layers.LeakyReLU(),
layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh')
])
return model
generator = make_generator_model()
generator.summary()
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 12544) 1254400
_________________________________________________________________
batch_normalization (BatchNo (None, 12544) 50176
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 12544) 0
_________________________________________________________________
reshape (Reshape) (None, 7, 7, 256) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 7, 7, 128) 819200
_________________________________________________________________
batch_normalization_1 (Batch (None, 7, 7, 128) 512
_________________________________________________________________
leaky_re_lu_1 (LeakyReLU) (None, 7, 7, 128) 0
_________________________________________________________________
conv2d_transpose_1 (Conv2DTr (None, 14, 14, 64) 204800
_________________________________________________________________
batch_normalization_2 (Batch (None, 14, 14, 64) 256
_________________________________________________________________
leaky_re_lu_2 (LeakyReLU) (None, 14, 14, 64) 0
_________________________________________________________________
conv2d_transpose_2 (Conv2DTr (None, 28, 28, 1) 1600
=================================================================
Total params: 2,330,944
Trainable params: 2,305,472
Non-trainable params: 25,472
_________________________________________________________________
2. 判别器
判别器是一个基于 CNN 的图片分类器。
def make_discriminator_model():
model = tf.keras.Sequential([
layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1]),
layers.LeakyReLU(),
layers.Dropout(0.3),
layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'),
layers.LeakyReLU(),
layers.Dropout(0.3),
layers.Flatten(),
layers.Dense(1)
])
return model
discriminator = make_discriminator_model()
discriminator.summary()
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 14, 14, 64) 1664
_________________________________________________________________
leaky_re_lu_3 (LeakyReLU) (None, 14, 14, 64) 0
_________________________________________________________________
dropout (Dropout) (None, 14, 14, 64) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 7, 7, 128) 204928
_________________________________________________________________
leaky_re_lu_4 (LeakyReLU) (None, 7, 7, 128) 0
_________________________________________________________________
dropout_1 (Dropout) (None, 7, 7, 128) 0
_________________________________________________________________
flatten (Flatten) (None, 6272) 0
_________________________________________________________________
dense_1 (Dense) (None, 1) 6273
=================================================================
Total params: 212,865
Trainable params: 212,865
Non-trainable params: 0
_________________________________________________________________
四、定义损失函数和优化器
为两个模型定义损失函数和优化器。
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
1. 判别器损失
该方法量化判断真伪图片的能力。它将判别器对真实图片的预测值与值全为 1 的数组进行对比,将判别器对伪造(生成的)图片的预测值与值全为 0 的数组进行对比。
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
2. 生成器损失
生成器损失量化其欺骗判别器的能力。直观来讲,如果生成器表现良好,判别器将会把伪造图片判断为真实图片(或 1)。这里我们将把判别器在生成图片上的判断结果与一个值全为 1 的数组进行对比。
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
由于我们需要分别训练两个网络,判别器和生成器的优化器是不同的。
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
五、定义训练循环
EPOCHS = 60
noise_dim = 100
num_examples_to_generate = 16
seed = tf.random.normal([num_examples_to_generate, noise_dim])
训练循环在生成器接收到一个随机种子作为输入时开始。该种子用于生产一张图片。判别器随后被用于区分真实图片(选自训练集)和伪造图片(由生成器生成)。针对这里的每一个模型都计算损失函数,并且计算梯度用于更新生成器与判别器。
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, noise_dim])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs):
for epoch in range(epochs):
start = time.time()
for image_batch in dataset:
train_step(image_batch)
display.clear_output(wait=True)
generate_and_save_images(generator, epoch + 1, seed)
print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
display.clear_output(wait=True)
generate_and_save_images(generator, epochs, seed)
生成与保存图片
def generate_and_save_images(model, epoch, test_input):
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(4,4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)
plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
plt.axis('off')
plt.savefig('./images/19/image_at_epoch_{:04d}.png'.format(epoch))
plt.show()
六、训练模型
调用上面定义的 train() 方法来同时训练生成器和判别器。在训练之初,生成的图片看起来像是随机噪声。随着训练过程的进行,生成的数字将越来越真实。在大概 50 个 epoch 之后,这些图片看起来像是 MNIST 数字。
%%time :将会给出cell的代码运行一次所花费的时间。
%%time
train(train_dataset, EPOCHS)
Wall time: 4min 46s
七、创建 GIF
import imageio,pathlib
def compose_gif():
data_dir = "./images/19"
data_dir = pathlib.Path(data_dir)
paths = list(data_dir.glob('*'))
gif_images = []
for path in paths:
gif_images.append(imageio.imread(path))
imageio.mimsave("./pic_gif/MINST_DCGAN_19.gif",gif_images,fps=8)
compose_gif()
print("GIF动图生成完成!")
GIF动图生成完成!
八、同系列作品
🚀 深度学习新人必看:
- 小白入门深度学习 | 第一篇:配置深度学习环境
- 小白入门深度学习 | 第二篇:编译器的使用-Jupyter Notebook
- 小白入门深度学习 | 第三篇:深度学习初体验
🚀 卷积神经网络篇:
- 深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天
- 深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天
- 深度学习100例-卷积神经网络(CNN)服装图像分类 | 第3天
- 深度学习100例-卷积神经网络(CNN)花朵识别 | 第4天
- 深度学习100例-卷积神经网络(CNN)天气识别 | 第5天
- 深度学习100例-卷积神经网络(VGG-16)识别海贼王草帽一伙 | 第6天
- 深度学习100例-卷积神经网络(VGG-19)识别灵笼中的人物 | 第7天
- 深度学习100例-卷积神经网络(ResNet-50)鸟类识别 | 第8天
- 深度学习100例-卷积神经网络(AlexNet)手把手教学 | 第11天
- 深度学习100例-卷积神经网络(CNN)识别验证码 | 第12天
- 深度学习100例-卷积神经网络(Inception V3)识别手语 | 第13天
- 深度学习100例-卷积神经网络(Inception-ResNet-v2)识别交通标志 | 第14天
- 深度学习100例-卷积神经网络(CNN)实现车牌识别 | 第15天
- 深度学习100例-卷积神经网络(CNN)识别神奇宝贝小智一伙 | 第16天
- 深度学习100例-卷积神经网络(CNN)注意力检测 | 第17天
🚀 循环神经网络篇:
- 深度学习100例-循环神经网络(RNN)实现股票预测 | 第9天
- 深度学习100例-循环神经网络(LSTM)实现股票预测 | 第10天
🚀 生成对抗网络篇:
- 深度学习100例-生成对抗网络(GAN)手写数字生成 | 第18天
🚀 本文选自专栏:《深度学习100例》
未完~
持续更新 欢迎 点赞👍、收藏?、关注👀
- 点赞👍:点赞给我持续更新的动力
- 收藏??:收藏后你能够随时找到文章
- 关注👀:关注我第一时间接收最新文章
|