IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 机器学习sklearn实践——决策树(1) -> 正文阅读

[人工智能]机器学习sklearn实践——决策树(1)

sklearn实践——决策树(分类树)

1.1 基本概念

决策树是一种非参数的监督学习,可以从一系列带有特征和标签的数据中寻找规律,并用树形结构描述这些规律。

1.2 在sklearn中的基本框架

from sklearn.model_selection import train_test_split
from sklearn import tree

dtcf = tree.DecisionTreeClassifier() # 实例化模型
dtcf = dtcf.fit(x_train, y_train) # 模型的拟合
# 在sklearn中不接受任何一维矩阵作为特征矩阵的输入
score = dtcf.score(x_test, y_test) # 模型的评估

1.3 class DecisionTreeClassifier()的常用参数与属性

1.3.1 参数

criterion

在决策树划分分支时所采用的方法

”entropy“ 代表使用信息熵

“gini” 代表使用基尼系数 (默认参数)

在实际使用过程中,二者的差异并不是很大,但因为信息熵的计算涉及对数,会慢于基尼系数。

random_state

用来设置分支过程中的随机参数,主要用来固定结果,默认为“none”。

在不设置时,多次运行,可能会导致结果不一致,输入任意整数,可将结果稳定下来

splitter

类似于random_state,用来控制决策树的分支选项

“best” 代表优先选择更重要的特征进行分支

“random” 代表分支时更为随机,决策树可能会受一些噪声的影响加大加深

max_depth

用来限制树的最大深度,会将超过设定深度的分支全部剪除,是一种典型的防止决策树过拟合的方法。

在实际计算中,可多次调整该参数看其拟合效果。

min_samples_leaf

用来限定该节点分支后的子节点中必须含有大于等于min_samples_leaf个训练样本。否则该分支不会产生。

该参数会使决策树变得较为平滑,但数值设置太小会引起决策树的过拟合,设置的太大会引起欠拟合,需要多次调参确定。

min_samples_split

用来限定节点中必须含有大于等于min_samples_split个训练样本,该节点才能参与后续分支。

其效果类同于min_samples_leaf

max_features

用来限制分支中的特征数,当特征数大于max_features时会被舍弃,较为暴力。

适用于高维数据的降维,但在各特征的重要性未知的情况下设定,可能会使结果较差。一般来说,通过降维来防止过拟合不会采用这个方法,推荐选择PCA等降维算法。

1.3.2 属性

feature_importances_

用于查看各个特征对模型的重要程度

1.4 使用sklearn中的红酒数据集的实例

from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn import tree
import pandas as pd

wine = load_wine()

# 划分训练集和测试集 按7:3比例,并规定随机参数(任意整数即可,使训练集和测试集固定)
x_train, x_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.3, random_state=30)

dtcf = tree.DecisionTreeClassifier(criterion="entropy"
                                  , random_state=30
                                  , splitter="random"
                                  , max_depth=3
                                  )
dtcf = dtcf.fit(x_train, y_train)
score = dtcf.score(x_test, y_test)
print(score)
print(dtcf.feature_importances_)
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-03 11:10:51  更:2021-08-03 11:14:58 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/22 15:27:56-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码