Sparse Reward
推荐资料
? 强化学习算法在被引入深度神经网络后,对大量样本的需求更加明显。如果智能体在与环境的交互过程中没有获得奖励,那么该样本在基于值函数和基于策略梯度的损失中的贡献会很小。
? 针对解决稀疏奖励问题的研究主要包括:1
-
Reward Shaping:奖励设计与学习 -
经验回放机制 -
探索与利用 -
多目标学习和辅助任务
1. Reward Shaping
人为设计的 “密集”奖励。
例如,在机械臂“开门”的任务中,原始的稀疏奖励设定为:若机械臂把门打开,则给予“+1”奖励,其余情况下均给予“0”奖励。然而,由于任务的复杂性,机械臂从随机策略开始,很难通过自身探索获得奖励。为了简化训练过程,可以使用人为设计的奖励:1)在机械臂未碰到门把手时,将机械臂与门把手距离的倒数作为奖励;2)当机械臂接触门把手时,给予“+0.1”奖励;3)当机械臂转动门把手时,给予“+0.5”奖励;4)当机械臂完成开门时,给予“+1”奖励。这样,通过人为设计的密集奖励,可以引导机械臂完成开门的操作,简化训练过程。
2. 逆向强化学习
针对人为设计奖励中存在的问题,Ng等2提出了从最优交互序列中学习奖励函数的思路,此类方法称为”逆强化学习”。
3. 探索与利用(好奇法):
在序列决策中,智能体可能需要牺牲当前利益来选择非最优动作,期望能够获得更大的长期回报。
在 DRL领域中使用的探索与利用方法主要包括两类:基于计数的方法和基于内在激励的方法。其目的是构造虚拟奖励,用于和真实奖励函数共同学习。由于真实的奖励是稀疏的,使用虚拟奖励可以加快学习的进程。
ICM3(逆环境模型)—— 改进的基于内在激励的方法
- Network 1:预测的状态S与实际状态S差别越大,回报r越大,鼓励冒险
- Network 2:输入
S
t
S_t
St? 和
S
t
+
1
S_{t+1}
St+1? ,预测动作
a
t
a_t
at??? ,与真实动作差别大时,表示无关紧要的状态。??
- ICM 通过学习可以在特征空间中去除与预测动作无关的状态特征,在特征空间中构建环境模型可以去除环境噪声。
4. 多目标学习——层次强化学习
- 智能体可以从已经到达的位置来获得奖励。在训练中使用虚拟目标替代原始目标,使智能体即使在训练初期也能很快获得奖励,极大地加速了学习过程。
- 将一个单一目标,拆解为多个阶段的多层级的目标。
5. 辅助任务
在稀疏奖励情况下,当原始任务难以完成时,往往可以通过设置辅助任务的方法加速学习和训练。
-
Curriculum Learning,“课程式”强化学习: 当完成原始任务较为困难时,奖励的获取是困难的。此时,智能体可以先从简单的、相关的任务开始学习,然后不断增加任务的难度,逐步学习更加复杂的任务。 -
直接添加辅助任务:第二类方法是直接在原任务的基础上添加并行的辅助任 务,原任务和辅助任务共同学习。
参考文献
|