Python zip() 函数 ![在这里插入图片描述](https://img-blog.csdnimg.cn/82c1440761c2408fbaa5b26e1c3c1a70.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hoaGhoaGhoZ2dna2tr,size_16,color_FFFFFF,t_70) 参考链接:Python zip() 函数
Python dict() 函数 pandas.get_dummies 的用法 get_dummies 是利用pandas实现one hot encode的方式 ![在这里插入图片描述](https://img-blog.csdnimg.cn/57810d239a924b37bfd9c2fa61b95dd4.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hoaGhoaGhoZ2dna2tr,size_16,color_FFFFFF,t_70) CSR-matrix稀疏矩阵(附demo) ![在这里插入图片描述](https://img-blog.csdnimg.cn/d79b1e8643c24b95843d7b6682d8ac9e.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hoaGhoaGhoZ2dna2tr,size_16,color_FFFFFF,t_70) Python enumerate() 函数 ![在这里插入图片描述](https://img-blog.csdnimg.cn/ba44b6b4b4f94c30b216cd2d74c70566.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hoaGhoaGhoZ2dna2tr,size_16,color_FFFFFF,t_70) ![在这里插入图片描述](https://img-blog.csdnimg.cn/771902ca1ed3449ba580bdeafc16dcf7.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hoaGhoaGhoZ2dna2tr,size_16,color_FFFFFF,t_70) python coo_matrix的理解和用法
![在这里插入图片描述](https://img-blog.csdnimg.cn/199ad4f71f5546ee9cbb4116463ec738.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hoaGhoaGhoZ2dna2tr,size_16,color_FFFFFF,t_70) NumPy和SciPy - .todense()和.toarray()之间的区别 ![在这里插入图片描述](https://img-blog.csdnimg.cn/49e04c6ca80144c381962ba99e5b0c15.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hoaGhoaGhoZ2dna2tr,size_16,color_FFFFFF,t_70) one-hot encoding和常规label的转化 coo_matrix ![在这里插入图片描述](https://img-blog.csdnimg.cn/b1426e8e8cc04387b6c9a3502ec9fcf1.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hoaGhoaGhoZ2dna2tr,size_16,color_FFFFFF,t_70) ![在这里插入图片描述](https://img-blog.csdnimg.cn/a612bfee05c14a5fb5e38d6119cda789.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hoaGhoaGhoZ2dna2tr,size_16,color_FFFFFF,t_70) Scipy 稀疏矩阵 ![在这里插入图片描述](https://img-blog.csdnimg.cn/02803a0cb55f4a3d83dfd7f1ba880725.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hoaGhoaGhoZ2dna2tr,size_16,color_FFFFFF,t_70)
mtx = sparse.coo_matrix((3, 4), dtype=np.int8)
print(mtx.todense())
>>> [[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]
row = np.array([0, 3, 1, 0])
col = np.array([0, 3, 1, 2])
data = np.array([4, 5, 7, 9])
mtx = sparse.coo_matrix((data, (row, col)), shape=(4, 4))
print(mtx)
>>> (0, 0) 4
(3, 3) 5
(1, 1) 7
(0, 2) 9
print(mtx.todense())
>>> [[4 0 9 0]
[0 7 0 0]
[0 0 0 0]
[0 0 0 5]]
row = np.array([0, 0, 1, 3, 1, 0, 0])
col = np.array([0, 2, 1, 3, 1, 0, 0])
data = np.array([1, 1, 1, 1, 1, 1, 1])
mtx = sparse.coo_matrix((data, (row, col)), shape=(4, 4))
print(mtx.todense())
>>> [[3 0 1 0]
[0 2 0 0]
[0 0 0 0]
[0 0 0 1]]
print(mtx[2, 3])
>>> Traceback (most recent call last):
File "/Users/shenyi/Documents/Untitled.py", line 21, in <module>
print(mtx[2, 3])
TypeError: 'coo_matrix' object is not subscriptable
eye(m[, n, k, dtype, format]):对角线为1的稀疏矩阵 identity(n[, dtype, format]):单位矩阵 diags(diagonals[, offsets, shape, format, dtype]):构造对角矩阵(含偏移量) ![在这里插入图片描述](https://img-blog.csdnimg.cn/e147a7cfd1a94239b5fbfa17807a01aa.png) torch.from_numpy(ndarray) 功能及举例 ![在这里插入图片描述](https://img-blog.csdnimg.cn/553bd6b581b5461aa47b92c9d2f69297.png) ![在这里插入图片描述](https://img-blog.csdnimg.cn/50c06502773643f1afca00bbbc53d58a.png) pytorch中torch.manual_seed()的理解 ![在这里插入图片描述](https://img-blog.csdnimg.cn/8fae69600aaa4a98b35604c8c5ff9eaa.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hoaGhoaGhoZ2dna2tr,size_16,color_FFFFFF,t_70) ![在这里插入图片描述](https://img-blog.csdnimg.cn/d924d8c4c32d4e3495b756e565b5ead0.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hoaGhoaGhoZ2dna2tr,size_16,color_FFFFFF,t_70) ![在这里插入图片描述](https://img-blog.csdnimg.cn/c246b92600ce4585955e3b361124abde.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hoaGhoaGhoZ2dna2tr,size_16,color_FFFFFF,t_70) 每次运行的结果是相同的
import argparse模块总结 关于python中.item()的用法 ![在这里插入图片描述](https://img-blog.csdnimg.cn/4aaac3fa1f5c4e6597c3eb3a225248c8.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hoaGhoaGhoZ2dna2tr,size_16,color_FFFFFF,t_70) torch.optim.Adam优化器参数学习 model.train() 在使用pytorch构建神经网络的时候,训练过程中会在程序上方添加一句model.train(),作用是启用batch normalization和drop out。 参考链接:pytorch model.train()
|