IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 特征工程之特征提取和数据预处理 -> 正文阅读

[人工智能]特征工程之特征提取和数据预处理

数据的特征抽取

现实世界中多数特征都不是连续变量,比如分类、文字、图像等,为了对非连续变量做特征表述,需要对这些特征做数学化表述,因此就用到了特征提取. sklearn.feature_extraction提供了特征提取的很多方法

分类特征变量提取

我们将城市和环境作为字典数据,来进行特征的提取。
sklearn.feature_extraction.DictVectorizer(sparse = True)
将映射列表转换为Numpy数组或scipy.sparse矩阵

  • sparse 是否转换为scipy.sparse矩阵表示,默认开启

方法

fit_transform(X,y)

应用并转化映射列表X,y为目标类型

inverse_transform(X[, dict_type])

将Numpy数组或scipy.sparse矩阵转换为映射列表

from sklearn.feature_extraction import DictVectorizer
onehot = DictVectorizer() # 如果结果不用toarray,请开启sparse=False
instances = [{'city': '北京','temperature':100},{'city': '上海','temperature':60}, {'city': '深圳','temperature':30}]
X = onehot.fit_transform(instances).toarray()
print(onehot.inverse_transform(X))

文本特征提取(只限于英文)

文本的特征提取应用于很多方面,比如说文档分类、垃圾邮件分类和新闻分类。那么文本分类是通过词是否存在、以及词的概率(重要性)来表示。

(1)文档的中词的出现

数值为1表示词表中的这个词出现,为0表示未出现

sklearn.feature_extraction.text.CountVectorizer()

将文本文档的集合转换为计数矩阵(scipy.sparse matrices)

方法

fit_transform(raw_documents,y)

学习词汇词典并返回词汇文档矩阵

from sklearn.feature_extraction.text import CountVectorizer
content = ["life is short,i like python","life is too long,i dislike python"]
vectorizer = CountVectorizer()
print(vectorizer.fit_transform(content).toarray())

需要toarray()方法转变为numpy的数组形式

方法

fit_transform(raw_documents,y)

学习词汇和idf,返回术语文档矩阵。

from sklearn.feature_extraction.text import TfidfVectorizer
content = ["life is short,i like python","life is too long,i dislike python"]
vectorizer = TfidfVectorizer(stop_words='english')
print(vectorizer.fit_transform(content).toarray())
print(vectorizer.vocabulary_)

数据的特征预处理

归一化

归一化首先在特征(维度)非常多的时候,可以防止某一维或某几维对数据影响过大,也是为了把不同来源的数据统一到一个参考区间下,这样比较起来才有意义,其次可以程序可以运行更快。 例如:一个人的身高和体重两个特征,假如体重50kg,身高175cm,由于两个单位不一样,数值大小不一样。如果比较两个人的体型差距时,那么身高的影响结果会比较大,k-临近算法会有这个距离公式。
min-max方法
常用的方法是通过对原始数据进行线性变换把数据映射到[0,1]之间,变换的函数为:
在这里插入图片描述
其中min是样本中最小值,max是样本中最大值,注意在数据流场景下最大值最小值是变化的,另外,最大值与最小值非常容易受异常点影响,所以这种方法鲁棒性较差,只适合传统精确小数据场景。

def mm():
    """
    归一化处理
    :return: None
    """
    mm = MinMaxScaler(feature_range=(2, 3))
    data = mm.fit_transform([[90,2,10,40],[60,4,15,45],[75,3,13,46]])
    print(data)
    return None

标准化

常用的方法是z-score标准化,经过处理后的数据均值为0,标准差为1,处理方法是:
在这里插入图片描述
其中\muμ是样本的均值,\sigmaσ是样本的标准差,它们可以通过现有的样本进行估计,在已有的样本足够多的情况下比较稳定,适合嘈杂的数据场景

def stand():
    """
    标准化缩放
    :return: None
    """
    std = StandardScaler()
    data = std.fit_transform([[ 1., -1., 3.],[ 2., 4., 2.],[ 4., 6., -1.]])
    print(data)
    return None

缺失值

由于各种原因,许多现实世界的数据集包含缺少的值,通常编码为空白,NaN或其他占位符。然而,这样的数据集与scikit的分类器不兼容,它们假设数组中的所有值都是数字,并且都具有和保持含义。使用不完整数据集的基本策略是丢弃包含缺失值的整个行和/或列。然而,这是以丢失可能是有价值的数据(即使不完整)的代价。更好的策略是估算缺失值,即从已知部分的数据中推断它们。
填充缺失值 使用sklearn.preprocessing中的Imputer(或者sklearn.impute中的Simpleimputer,因为sklearn版本不同)类进行数据的填充

def im():
    """
    缺失值处理
    :return: None
    """
    im = SimpleImputer(missing_values=np.nan, strategy='mean')
    data = im.fit_transform([[1, 2], [np.nan, 3], [7, 6]])

    print(data)

    return None
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-07 12:05:08  更:2021-08-07 12:05:30 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/22 16:12:12-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码