IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 《python深度学习》优化器、损失函数、分类、回归、正则化、dropout -> 正文阅读

[人工智能]《python深度学习》优化器、损失函数、分类、回归、正则化、dropout

在这里插入图片描述

评价

该书是入门级
推荐阅读
[1]邱老师 神经网络与深度学习https://nndl.github.io/
[2]李沐 PyTorch版《动手学深度学习》https://zhuanlan.zhihu.com/p/85353963

识别手写数字

import keras
print(keras.__version__)
from keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

from keras import models
from keras import layers

network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))#第二层(也是最后一层)是一个 10 路 softmax 层,

network.compile(optimizer='rmsprop',
                loss='categorical_crossentropy',
                metrics=['accuracy'])
# 在开始训练之前,我们将对数据进行预处理,将其变换为网络要求的形状,并缩放到所
# 有值都在 [0, 1] 区间。比如,之前训练图像保存在一个 uint8 类型的数组中,其形状为
# (60000, 28, 28),取值区间为 [0, 255]
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255


from keras.utils import to_categorical

train_labels = to_categorical(train_labels)#标签进行分类编码
test_labels = to_categorical(test_labels)

network.fit(train_images, train_labels, epochs=5, batch_size=128)#训练

test_loss, test_acc = network.evaluate(test_images, test_labels)

print('test_acc:', test_acc)


电影评论二分类

'''
用密集连接的神经网络将向量输入划分为两个互斥的类别
'''
from keras.datasets import imdb

(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
print(train_data[0])


# word_index is a dictionary mapping words to an integer index
word_index = imdb.get_word_index()
# We reverse it, mapping integer indices to words
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
# We decode the review; note that our indices were offset by 3
# because 0, 1 and 2 are reserved indices for "padding", "start of sequence", and "unknown".
decoded_review = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
# 将评论解码。注意,索引减去了 3,因为 0、1、2是为“padding”(填充)、“start of sequence”(序列开始)、“unknown”(未知词)分别保留的索引
'''
构建网络
'''
from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
# 由于你面对的是一个二分类问题,网络输出是一
# 个概率值(网络最后一层使用 sigmoid 激活函数,仅包含一个单元),那么最好使用 binary_
# crossentropy(二元交叉熵)损失。

# 使用内置优化器
model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['acc'])

# 使用自定义优化器
# from keras import optimizers
#
# model.compile(optimizer=optimizers.RMSprop(lr=0.001),
#               loss='binary_crossentropy',
#               metrics=['accuracy'])
'''
读入数据集
'''
import numpy as np

def vectorize_sequences(sequences, dimension=10000):
    # Create an all-zero matrix of shape (len(sequences), dimension)
    results = np.zeros((len(sequences), dimension))
    for i, sequence in enumerate(sequences):
        results[i, sequence] = 1.  # set specific indices of results[i] to 1s
    return results
# Our vectorized training data
x_train = vectorize_sequences(train_data)
# Our vectorized test data
x_test = vectorize_sequences(test_data)
# Our vectorized labels
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')

# 分割出验证集:是训练过程中,未见过的数据
x_val = x_train[:10000]
partial_x_train = x_train[10000:]

y_val = y_train[:10000]
partial_y_train = y_train[10000:]
'''
train
'''
# 。这个对象有一个成员 history,它
# 是一个字典,包含训练过程中的所有数据。
history = model.fit(partial_x_train,
                    partial_y_train,
                    epochs=20,
                    batch_size=512,
                    validation_data=(x_val, y_val))
# 训练的数据都存在history里面
history_dict = history.history
history_dict.keys()
# dict_keys(['val_acc', 'acc', 'val_loss', 'loss'])
'''
绘制
'''
# 绘制训练损失和验证损失
import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

# "bo" is for "blue dot"
plt.plot(epochs, loss, 'bo', label='Training loss')
# b is for "solid blue line"
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()
# 绘制训练精度和验证精度

plt.clf()   # clear figure
acc_values = history_dict['acc']
val_acc_values = history_dict['val_acc']

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

新闻主题多分类

import keras
from keras.datasets import reuters

(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)

# 索引编码为新闻文本
word_index = reuters.get_word_index()
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
# Note that our indices were offset by 3
# because 0, 1 and 2 are reserved indices for "padding", "start of sequence", and "unknown".
decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])

# 将数据向量化
import numpy as np

def vectorize_sequences(sequences, dimension=10000):
    results = np.zeros((len(sequences), dimension))
    for i, sequence in enumerate(sequences):
        results[i, sequence] = 1.
    return results

# Our vectorized training data
x_train = vectorize_sequences(train_data)
# Our vectorized test data
x_test = vectorize_sequences(test_data)
#
def to_one_hot(labels, dimension=46):
    results = np.zeros((len(labels), dimension))
    for i, label in enumerate(labels):
        results[i, label] = 1.
    return results

# 将数据向量化:one-hot编码
# # Our vectorized training labels
# one_hot_train_labels = to_one_hot(train_labels)
# # Our vectorized test labels
# one_hot_test_labels = to_one_hot(test_labels)
#
#

from keras.utils.np_utils import to_categorical

one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)

'''
对于前面用过的 Dense 层的堆叠,每层只能访问上一层输出的信息。如果某一层丢失了与
分类问题相关的一些信息,那么这些信息无法被后面的层找回,也就是说,每一层都可能成为
信息瓶颈。上一个例子使用了 16 维的中间层,但对这个例子来说 16 维空间可能太小了,无法
学会区分 46 个不同的类别。这种维度较小的层可能成为信息瓶颈,永久地丢失相关信息。
'''

from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))
'''
最后一层使用了 softmax 激活。你在 MNIST 例子中见过这种用法。网络将输出在 46
个不同输出类别上的概率分布——对于每一个输入样本,网络都会输出一个 46 维向量,
其中 output[i] 是样本属于第 i 个类别的概率。46 个概率的总和为 1
'''
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['acc'])

# 验证
x_val = x_train[:1000]
partial_x_train = x_train[1000:]

y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]

history = model.fit(partial_x_train,
                    partial_y_train,
                    epochs=20,
                    batch_size=512,
                    validation_data=(x_val, y_val))

import matplotlib.pyplot as plt

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

plt.clf()   # clear figure

acc = history.history['acc']
val_acc = history.history['val_acc']

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

预测房价 回归问题

import keras
from keras.datasets import boston_housing

(train_data, train_targets), (test_data, test_targets) =  boston_housing.load_data()

# 标准化,房价的特征有很多,而且不同特征的数值差异较大
mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std

test_data -= mean
test_data /= std

# 数据量小,使用小网络
from keras import models
from keras import layers
'''
添加激活函数将会限制输出范围。
编译网络用的是 mse 损失函数,即均方误差(MSE,mean squared error),预测值与目标值之差的平方。这是回归问题常用的损失函数。
平均绝对误差(MAE,mean absolute error)。它是预测值与目标值之差的绝对值。
'''
def build_model():
    # Because we will need to instantiate
    # the same model multiple times,
    # we use a function to construct it.
    model = models.Sequential()
    model.add(layers.Dense(64, activation='relu',
                           input_shape=(train_data.shape[1],)))
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(1))
    model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
    return model

# k折交叉验证
import numpy as np

k = 4
num_val_samples = len(train_data) // k
num_epochs = 100
all_scores = []
# for i in range(k):
#     print('processing fold #', i)
#     # Prepare the validation data: data from partition # k
#     val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
#     val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
#
#     # Prepare the training data: data from all other partitions
#     partial_train_data = np.concatenate(
#         [train_data[:i * num_val_samples],
#          train_data[(i + 1) * num_val_samples:]],
#         axis=0)
#     partial_train_targets = np.concatenate(
#         [train_targets[:i * num_val_samples],
#          train_targets[(i + 1) * num_val_samples:]],
#         axis=0)
#
#     # Build the Keras model (already compiled)
#     model = build_model()
#     # Train the model (in silent mode, verbose=0)
#     model.fit(partial_train_data, partial_train_targets,
#               epochs=num_epochs, batch_size=1, verbose=0)
#     # Evaluate the model on the validation data
#     val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)
#     all_scores.append(val_mae)
# print(all_scores)

# from keras import backend as K
#
# # Some memory clean-up
# K.clear_session()
#
num_epochs = 500
all_mae_histories = []
for i in range(k):
    print('processing fold #', i)
    # Prepare the validation data: data from partition # k
    val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
    val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]

    # Prepare the training data: data from all other partitions
    partial_train_data = np.concatenate(
        [train_data[:i * num_val_samples],
         train_data[(i + 1) * num_val_samples:]],
        axis=0)
    partial_train_targets = np.concatenate(
        [train_targets[:i * num_val_samples],
         train_targets[(i + 1) * num_val_samples:]],
        axis=0)

    # Build the Keras model (already compiled)
    model = build_model()
    # Train the model (in silent mode, verbose=0)
    history = model.fit(partial_train_data, partial_train_targets,
                        validation_data=(val_data, val_targets),
                        epochs=num_epochs, batch_size=1, verbose=0)
    # mae_history = history.history['val_mean_absolute_error']
    mae_history = history.history['val_mae']
    all_mae_histories.append(mae_history)

#计算所有轮次中的 K 折验证分数平均值
average_mae_history = [
    np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]

# 绘制验证分数
import matplotlib.pyplot as plt

plt.plot(range(1, len(average_mae_history) + 1), average_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()

def smooth_curve(points, factor=0.9):
  smoothed_points = []
  for point in points:
    if smoothed_points:
      previous = smoothed_points[-1]
      smoothed_points.append(previous * factor + point * (1 - factor))
    else:
      smoothed_points.append(point)
  return smoothed_points

smooth_mae_history = smooth_curve(average_mae_history[10:])

plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()

正则化 dropout 电影评论

import keras
from keras.datasets import imdb
import numpy as np

(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)

def vectorize_sequences(sequences, dimension=10000):
    # Create an all-zero matrix of shape (len(sequences), dimension)
    results = np.zeros((len(sequences), dimension))
    for i, sequence in enumerate(sequences):
        results[i, sequence] = 1.  # set specific indices of results[i] to 1s
    return results

# Our vectorized training data
x_train = vectorize_sequences(train_data)
# Our vectorized test data
x_test = vectorize_sequences(test_data)
# Our vectorized labels
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')

from keras import models
from keras import layers
# 大模型
original_model = models.Sequential()
original_model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
original_model.add(layers.Dense(16, activation='relu'))
original_model.add(layers.Dense(1, activation='sigmoid'))

original_model.compile(optimizer='rmsprop',
                       loss='binary_crossentropy',
                       metrics=['acc'])

# 小模型
smaller_model = models.Sequential()
smaller_model.add(layers.Dense(4, activation='relu', input_shape=(10000,)))
smaller_model.add(layers.Dense(4, activation='relu'))
smaller_model.add(layers.Dense(1, activation='sigmoid'))

smaller_model.compile(optimizer='rmsprop',
                      loss='binary_crossentropy',
                      metrics=['acc'])
# 大模型训练
original_hist = original_model.fit(x_train, y_train,
                                   epochs=20,
                                   batch_size=512,
                                   validation_data=(x_test, y_test))
# 小模型训练
smaller_model_hist = smaller_model.fit(x_train, y_train,
                                       epochs=20,
                                       batch_size=512,
                                       validation_data=(x_test, y_test))

epochs = range(1, 21)
original_val_loss = original_hist.history['val_loss']
smaller_model_val_loss = smaller_model_hist.history['val_loss']

import matplotlib.pyplot as plt

# b+ is for "blue cross"
plt.plot(epochs, original_val_loss, 'b+', label='Original model')
# "bo" is for "blue dot"
plt.plot(epochs, smaller_model_val_loss, 'bo', label='Smaller model')
plt.xlabel('Epochs')
plt.ylabel('Validation loss')
plt.legend()

plt.show()

bigger_model = models.Sequential()
bigger_model.add(layers.Dense(512, activation='relu', input_shape=(10000,)))
bigger_model.add(layers.Dense(512, activation='relu'))
bigger_model.add(layers.Dense(1, activation='sigmoid'))

bigger_model.compile(optimizer='rmsprop',
                     loss='binary_crossentropy',
                     metrics=['acc'])

bigger_model_hist = bigger_model.fit(x_train, y_train,
                                     epochs=20,
                                     batch_size=512,
                                     validation_data=(x_test, y_test))

bigger_model_val_loss = bigger_model_hist.history['val_loss']

plt.plot(epochs, original_val_loss, 'b+', label='Original model')
plt.plot(epochs, bigger_model_val_loss, 'bo', label='Bigger model')
plt.xlabel('Epochs')
plt.ylabel('Validation loss')
plt.legend()

plt.show()

original_train_loss = original_hist.history['loss']
bigger_model_train_loss = bigger_model_hist.history['loss']

plt.plot(epochs, original_train_loss, 'b+', label='Original model')
plt.plot(epochs, bigger_model_train_loss, 'bo', label='Bigger model')
plt.xlabel('Epochs')
plt.ylabel('Training loss')
plt.legend()

plt.show()
# 正则化
from keras import regularizers

l2_model = models.Sequential()
l2_model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001),
                          activation='relu', input_shape=(10000,)))
l2_model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001),
                          activation='relu'))
l2_model.add(layers.Dense(1, activation='sigmoid'))

l2_model.compile(optimizer='rmsprop',
                 loss='binary_crossentropy',
                 metrics=['acc'])

l2_model_hist = l2_model.fit(x_train, y_train,
                             epochs=20,
                             batch_size=512,
                             validation_data=(x_test, y_test))


l2_model_val_loss = l2_model_hist.history['val_loss']

plt.plot(epochs, original_val_loss, 'b+', label='Original model')
plt.plot(epochs, l2_model_val_loss, 'bo', label='L2-regularized model')
plt.xlabel('Epochs')
plt.ylabel('Validation loss')
plt.legend()

plt.show()

# l1正则化
# from keras import regularizers
#
# # L1 regularization
# regularizers.l1(0.001)
#
# # L1 and L2 regularization at the same time
# regularizers.l1_l2(l1=0.001, l2=0.001)

# dropout
dpt_model = models.Sequential()
dpt_model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
dpt_model.add(layers.Dropout(0.5))
dpt_model.add(layers.Dense(16, activation='relu'))
dpt_model.add(layers.Dropout(0.5))
dpt_model.add(layers.Dense(1, activation='sigmoid'))

dpt_model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['acc'])
dpt_model_hist = dpt_model.fit(x_train, y_train,
                               epochs=20,
                               batch_size=512,
                               validation_data=(x_test, y_test))

dpt_model_val_loss = dpt_model_hist.history['val_loss']

plt.plot(epochs, original_val_loss, 'b+', label='Original model')
plt.plot(epochs, dpt_model_val_loss, 'bo', label='Dropout-regularized model')
plt.xlabel('Epochs')
plt.ylabel('Validation loss')
plt.legend()

plt.show()
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-07 12:05:08  更:2021-08-07 12:07:41 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/17 22:47:17-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码