IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Lasso概念及scikit-learn实战 -> 正文阅读

[人工智能]Lasso概念及scikit-learn实战

基本概念

岭回归相比,Lasso采用增加L1正则化的方式,其目标函数为

(\textbf{w},b)=\mathrm{argmin}\sum_{i=1}^{m}(f((\textbf{x}_{i})-y_{i})^2+\alpha ||\textbf{w}||

其中||\textbf{w}||称为L1正则化项,\alpha称为正则化项的系数。与L2正则化相比,L1正则化会使得部分参数为零。这个特性可被用于特征选择或者降维。

代码实现

假设目标函数为y=w_{1}x_{1}+w_{2}x_{2}+w_{3}x_{3}+w_{0}

已知当x_{1}=a_{1}x_{2}=b_{1}x_{3}=c_{1}时,y=d_{1},当x_{1}=a_{2}x_{2}=b_{2}, x_{3}=c_{2}时,y=d_{2},设置正则化项的系数为0.5

则Lasso回归求参数的代码如下所示

from sklearn import linear_model
rep = linear_model.Lasso(alpha=0.5)
rep.fit([[a1,b1,c1],[a2,b2,c2]],[d1,d2])
print(rep.coef_)
print(reg.intercept_)

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-07 21:46:06  更:2021-08-07 21:46:35 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 21:52:38-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码