写在前面的话:
这个模型借鉴了github上一个大佬的模型和他的文章:
TensorFlow练手项目三:使用VGG19迁移学习实现图像风格迁移_
食用方法:
在setting.py里面更改配置就可以了
CONTENT_LAYERS = {'block4_conv2': 0.5, 'block5_conv2': 0.5}
STYLE_LAYERS = {'block1_conv1': 0.2, 'block2_conv1': 0.2, 'block3_conv1': 0.2, 'block4_conv1': 0.2,
'block5_conv1': 0.2}
layer=["block4_conv2","block5_conv2","block1_conv1","block2_conv1","block3_conv1","block4_conv1","block5_conv1"]
CONTENT_IMAGE_PATH = './images_content/content2.jpg'
STYLE_IMAGE_PATH = './images_style/stytle1.jpg'
OUTPUT_DIR = './output1'
CONTENT_LOSS_FACTOR = 1
STYLE_LOSS_FACTOR = 100
WIDTH = 527
HEIGHT = 724
EPOCHS = 20
STEPS_PER_EPOCH = 100
LEARNING_RATE = 0.03
训练效果:
训练后的图片:

style.jpg

content.jpg

这个训练结果并不是很满意,但是,通过分析数据集,发现风格图片抽象一点,而content.jpg图片分辨率高一点效果会很好,就比如大佬的图片:



这样看起来效果就很不错。 仓库地址:https://github.com/hideonpython/Style-migration-implemented-by-tensorflow2.x/
|