IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 监督学习中经典分类/回归模型的sklearn代码实现 -> 正文阅读

[人工智能]监督学习中经典分类/回归模型的sklearn代码实现

代码主要参考《python机器学习及实践》一书

分类学习

Logistics 回归 和 SGD分类器模型

import pandas as pd
import numpy as np
column_names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size',
                'Uniformity of Cell Shape', 'Marginal Adhesion', 'Single Epithelial Cell Size',
                'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli', 'Mitoses', 'Class']
data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data', names=column_names)
#处理缺失值
data = data.replace(to_replace='?', value=np.nan)
#丢弃有缺失值的数据
data = data.dropna(how='any')
data.shape
(683, 11)
data.head()
Sample code numberClump ThicknessUniformity of Cell SizeUniformity of Cell ShapeMarginal AdhesionSingle Epithelial Cell SizeBare NucleiBland ChromatinNormal NucleoliMitosesClass
010000255111213112
1100294554457103212
210154253111223112
310162776881343712
410170234113213112
#切分数据:训练和测试
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(data[column_names[1:10]], data[column_names[10]],
                                                    test_size=0.25, random_state=33)
y_train.value_counts()
2    344
4    168
Name: Class, dtype: int64
y_test.value_counts()
2    100
4     71
Name: Class, dtype: int64
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression, SGDClassifier

#数据标准化,每个特征方差为1,均值为0
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
# 初始化LogisticRegression 和 SGDClassifier
lr = LogisticRegression()
sgdc = SGDClassifier()
lr.fit(X_train, y_train)
lr_y_predict = lr.predict(X_test)
sgdc.fit(X_train, y_train)
sgdc_y_predict = sgdc.predict(X_test)
# accuracy, recall, precision and F1 measure
from sklearn.metrics import classification_report

print('Accuracy of LR Classification:', lr.score(X_test, y_test))
print (classification_report(y_test, lr_y_predict, target_names=['benign', 'malignant']))
Accuracy of LR Classification: 0.9883040935672515
              precision    recall  f1-score   support

      benign       0.99      0.99      0.99       100
   malignant       0.99      0.99      0.99        71

    accuracy                           0.99       171
   macro avg       0.99      0.99      0.99       171
weighted avg       0.99      0.99      0.99       171
print('Accuracy of SGDClassifier:', sgdc.score(X_test, y_test))
print(classification_report(y_test, sgdc_y_predict, target_names=['benign', 'malignant']))
Accuracy of SGDClassifier: 0.9883040935672515
              precision    recall  f1-score   support

      benign       1.00      0.98      0.99       100
   malignant       0.97      1.00      0.99        71

    accuracy                           0.99       171
   macro avg       0.99      0.99      0.99       171
weighted avg       0.99      0.99      0.99       171

支持向量机(SVM)

#数据获取
from sklearn.datasets import load_digits
digits = load_digits()
digits.data.shape
(1797, 64)
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.25, random_state=33)
y_train.shape, y_test.shape
((1347,), (450,))
from sklearn.preprocessing import StandardScaler

ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
from sklearn.svm import LinearSVC

lsvc = LinearSVC()
lsvc.fit(X_train, y_train)
y_predict = lsvc.predict(X_test)
print('The Accuracy of Linear SVC is', lsvc.score(X_test, y_test))
The Accuracy of Linear SVC is 0.9533333333333334
from sklearn.metrics import classification_report

print(classification_report(y_test, y_predict, target_names=digits.target_names.astype(str)))
              precision    recall  f1-score   support

           0       0.92      1.00      0.96        35
           1       0.96      0.98      0.97        54
           2       0.98      1.00      0.99        44
           3       0.93      0.93      0.93        46
           4       0.97      1.00      0.99        35
           5       0.94      0.94      0.94        48
           6       0.96      0.98      0.97        51
           7       0.92      1.00      0.96        35
           8       0.98      0.84      0.91        58
           9       0.95      0.91      0.93        44

    accuracy                           0.95       450
   macro avg       0.95      0.96      0.95       450
weighted avg       0.95      0.95      0.95       450

朴素贝叶斯法

from sklearn.datasets import fetch_20newsgroups

news = fetch_20newsgroups(subset='all')   #需要从网络下载
print(len(news.data))
print(news.data[0])
18846
From: Mamatha Devineni Ratnam <mr47+@andrew.cmu.edu>
Subject: Pens fans reactions
Organization: Post Office, Carnegie Mellon, Pittsburgh, PA
Lines: 12
NNTP-Posting-Host: po4.andrew.cmu.edu

?
?
I am sure some bashers of Pens fans are pretty confused about the lack
of any kind of posts about the recent Pens massacre of the Devils. Actually,
I am bit puzzled too and a bit relieved. However, I am going to put an end
to non-PIttsburghers’ relief with a bit of praise for the Pens. Man, they
are killing those Devils worse than I thought. Jagr just showed you why
he is much better than his regular season stats. He is also a lot
fo fun to watch in the playoffs. Bowman should let JAgr have a lot of
fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final
regular season game. PENS RULE!!!

?

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25, random_state=33)
len(X_train), len(X_test)
(14134, 4712)
len(y_train), len(y_test)
(14134, 4712)
#文本特征抽取
from sklearn.feature_extraction.text import CountVectorizer

vec = CountVectorizer()
X_train = vec.fit_transform(X_train)
X_test = vec.transform(X_test)
(14134, 150725)
X_train.shape, X_test.shape
((14134, 150725), (4712, 150725))
from sklearn.naive_bayes import MultinomialNB


mnb = MultinomialNB()
mnb.fit(X_train, y_train)
y_predict = mnb.predict(X_test)
from sklearn.metrics import classification_report

print('The accuracy of Naive Bayes Classifier is', mnb.score(X_test, y_test))
print(classification_report(y_test, y_predict, target_names=news.target_names))
The accuracy of Naive Bayes Classifier is 0.8397707979626485
                          precision    recall  f1-score   support

             alt.atheism       0.86      0.86      0.86       201
           comp.graphics       0.59      0.86      0.70       250
 comp.os.ms-windows.misc       0.89      0.10      0.17       248
comp.sys.ibm.pc.hardware       0.60      0.88      0.72       240
   comp.sys.mac.hardware       0.93      0.78      0.85       242
          comp.windows.x       0.82      0.84      0.83       263
            misc.forsale       0.91      0.70      0.79       257
               rec.autos       0.89      0.89      0.89       238
         rec.motorcycles       0.98      0.92      0.95       276
      rec.sport.baseball       0.98      0.91      0.95       251
        rec.sport.hockey       0.93      0.99      0.96       233
               sci.crypt       0.86      0.98      0.91       238
         sci.electronics       0.85      0.88      0.86       249
                 sci.med       0.92      0.94      0.93       245
               sci.space       0.89      0.96      0.92       221
  soc.religion.christian       0.78      0.96      0.86       232
      talk.politics.guns       0.88      0.96      0.92       251
   talk.politics.mideast       0.90      0.98      0.94       231
      talk.politics.misc       0.79      0.89      0.84       188
      talk.religion.misc       0.93      0.44      0.60       158

                accuracy                           0.84      4712
               macro avg       0.86      0.84      0.82      4712
            weighted avg       0.86      0.84      0.82      4712

K近邻

#读取数据
from sklearn.datasets import load_iris
iris = load_iris()
iris.data.shape
(150, 4)
print(iris.DESCR)
.. _iris_dataset:

Iris plants dataset
--------------------

**Data Set Characteristics:**

    :Number of Instances: 150 (50 in each of three classes)
    :Number of Attributes: 4 numeric, predictive attributes and the class
    :Attribute Information:
        - sepal length in cm
        - sepal width in cm
        - petal length in cm
        - petal width in cm
        - class:
                - Iris-Setosa
                - Iris-Versicolour
                - Iris-Virginica
                
    :Summary Statistics:

    ============== ==== ==== ======= ===== ====================
                    Min  Max   Mean    SD   Class Correlation
    ============== ==== ==== ======= ===== ====================
    sepal length:   4.3  7.9   5.84   0.83    0.7826
    sepal width:    2.0  4.4   3.05   0.43   -0.4194
    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)
    petal width:    0.1  2.5   1.20   0.76    0.9565  (high!)
    ============== ==== ==== ======= ===== ====================

    :Missing Attribute Values: None
    :Class Distribution: 33.3% for each of 3 classes.
    :Creator: R.A. Fisher
    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
    :Date: July, 1988

The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.

This is perhaps the best known database to be found in the
pattern recognition literature.  Fisher's paper is a classic in the field and
is referenced frequently to this day.  (See Duda & Hart, for example.)  The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant.  One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.

.. topic:: References

   - Fisher, R.A. "The use of multiple measurements in taxonomic problems"
     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
     Mathematical Statistics" (John Wiley, NY, 1950).
   - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.
     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.
   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
     Structure and Classification Rule for Recognition in Partially Exposed
     Environments".  IEEE Transactions on Pattern Analysis and Machine
     Intelligence, Vol. PAMI-2, No. 1, 67-71.
   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions
     on Information Theory, May 1972, 431-433.
   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II
     conceptual clustering system finds 3 classes in the data.
   - Many, many more ...
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33)
#数据标准化
from sklearn.preprocessing import StandardScaler

ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier


knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_predict = knc.predict(X_test)
print('The accuracy of K-Nearest Neighbor Classifier is', knc.score(X_test, y_test))
The accuracy of K-Nearest Neighbor Classifier is 0.8947368421052632
from sklearn.metrics import classification_report

print(classification_report(y_test, y_predict, target_names=iris.target_names))
              precision    recall  f1-score   support

      setosa       1.00      1.00      1.00         8
  versicolor       0.73      1.00      0.85        11
   virginica       1.00      0.79      0.88        19

    accuracy                           0.89        38
   macro avg       0.91      0.93      0.91        38
weighted avg       0.92      0.89      0.90        38

决策树

#数据导入
import pandas as pd

titanic = pd.read_csv('./Titanic.txt', sep='\t')
titanic.head()
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
titanic.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   PassengerId  891 non-null    int64  
 1   Survived     891 non-null    int64  
 2   Pclass       891 non-null    int64  
 3   Name         891 non-null    object 
 4   Sex          891 non-null    object 
 5   Age          714 non-null    float64
 6   SibSp        891 non-null    int64  
 7   Parch        891 non-null    int64  
 8   Ticket       891 non-null    object 
 9   Fare         891 non-null    float64
 10  Cabin        204 non-null    object 
 11  Embarked     889 non-null    object 
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
#数据预处理
X = titanic[['Pclass', 'Age', 'Sex']]
Y = titanic['Survived']

X.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 3 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   Pclass  891 non-null    int64  
 1   Age     714 non-null    float64
 2   Sex     891 non-null    object 
dtypes: float64(1), int64(1), object(1)
memory usage: 21.0+ KB
X['Age'].fillna(X['Age'].mean(), inplace=True)
X.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 3 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   Pclass  891 non-null    int64  
 1   Age     891 non-null    float64
 2   Sex     891 non-null    object 
dtypes: float64(1), int64(1), object(1)
memory usage: 21.0+ KB
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.25, random_state=33)
X_train.to_dict(orient='records')
[{'Pclass': 1, 'Age': 47.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 40.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 23.5, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 47.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 27.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 24.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 45.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 52.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 62.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 31.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 43.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 18.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 17.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 22.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 24.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 50.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 34.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 33.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 10.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 39.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 1.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 23.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 46.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 3.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 36.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 25.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 20.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 33.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 24.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 13.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 61.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 2.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 46.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 19.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 4.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 51.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 24.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 18.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 37.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 30.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 16.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 35.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 9.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 25.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 26.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 50.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 32.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 8.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 16.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 20.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 39.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 44.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 30.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 4.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 48.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 30.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 18.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 30.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 45.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 37.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 32.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 40.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 17.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 33.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 40.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 29.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 11.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 19.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 17.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 51.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 21.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 9.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 26.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 36.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 54.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 30.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 18.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 39.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 31.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 18.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 35.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 21.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 44.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 11.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 33.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 19.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 48.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 34.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 2.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 23.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 50.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 41.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 26.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 47.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 15.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 36.5, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 50.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 20.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 31.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 32.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 31.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 27.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 31.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 74.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 24.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 42.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 26.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 39.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 45.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 47.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 22.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 4.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 34.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 41.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 16.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 18.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 26.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 31.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 17.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 39.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 18.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 57.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 34.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 18.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 38.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 50.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 39.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 32.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 36.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 24.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 1.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 18.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 18.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 65.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 32.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 38.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 41.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 31.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 24.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 54.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 18.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 33.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 26.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 37.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 38.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 20.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 36.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 41.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 44.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 43.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 31.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 20.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 40.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 27.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 42.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 26.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 58.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 36.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 30.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 2.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 18.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 26.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 16.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 26.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 19.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 50.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 44.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 38.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 39.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 24.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 26.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 49.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 22.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 31.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 35.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 27.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 55.5, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 52.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 15.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 20.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 29.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 36.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 25.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 5.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 11.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 21.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 35.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 40.5, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 18.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 30.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 31.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 49.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 35.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 34.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 1.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 35.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 61.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 47.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 51.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 60.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 27.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 18.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 15.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 0.75, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 44.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 55.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 47.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 45.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 27.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 22.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 54.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 1.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 18.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 3.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 0.83, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 30.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 18.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 14.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 32.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 30.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 23.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 21.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 30.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 18.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 21.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 41.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 4.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 24.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 34.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 39.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 38.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 30.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 20.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 21.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 32.5, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 16.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 43.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 22.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 32.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 35.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 21.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 29.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 36.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 23.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 30.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 62.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 37.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 49.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 28.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 35.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 26.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 14.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 41.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 35.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 27.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 24.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 33.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 16.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 30.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 30.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 34.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 17.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 27.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 64.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 24.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 51.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 60.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 56.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 29.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 61.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 48.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 27.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 44.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 28.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 71.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 21.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 63.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 38.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 36.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 55.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 6.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 33.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 27.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 14.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 4.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 5.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 16.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 3.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 20.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 16.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 40.5, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 22.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 46.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 27.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 33.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 30.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 20.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 18.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 1.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 60.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 28.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 42.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 51.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 44.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 66.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 8.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 35.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 16.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 38.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 42.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 21.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 14.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 40.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 24.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 70.5, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 54.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 0.67, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 45.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 20.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 3.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 56.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 45.5, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 80.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 30.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 20.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 27.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 45.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 34.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 52.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 36.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 38.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 39.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 24.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 34.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 31.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 7.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 21.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 40.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 33.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 42.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 36.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 35.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 34.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 21.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 36.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 54.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 40.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 27.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 27.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 40.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 42.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 21.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 37.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 29.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 31.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 23.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 20.5, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 58.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 26.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 5.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 24.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 18.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 17.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 42.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 21.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 23.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 4.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 2.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 31.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 33.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 24.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 70.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 17.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 42.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 0.83, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 28.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 26.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 14.5, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 25.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 24.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 24.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 26.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 27.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 17.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 4.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 23.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 40.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 3.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 32.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 47.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 8.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 44.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 0.75, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 32.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 21.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 11.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 34.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 31.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 26.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 42.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 26.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 20.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 54.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 58.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 4.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 43.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 39.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 31.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 20.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 36.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 23.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 30.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 32.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 28.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 19.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 23.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 40.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 32.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 32.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 36.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 45.5, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 29.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 21.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 44.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 70.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 51.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 21.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 16.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 38.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 24.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 32.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 32.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 2.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 36.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 34.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 7.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 31.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 36.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 17.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 39.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 25.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 35.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 47.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 28.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 47.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 22.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 24.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 1.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 32.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 42.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 64.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 0.42, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 6.0, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 23.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 50.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 38.0, 'Sex': 'female'},
 {'Pclass': 1, 'Age': 21.0, 'Sex': 'male'},
 {'Pclass': 1, 'Age': 58.0, 'Sex': 'female'},
 {'Pclass': 3, 'Age': 28.5, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 23.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 29.69911764705882, 'Sex': 'female'},
 {'Pclass': 2, 'Age': 25.0, 'Sex': 'male'},
 {'Pclass': 3, 'Age': 21.0, 'Sex': 'male'},
 {'Pclass': 2, 'Age': 35.0, 'Sex': 'male'}]
from sklearn.feature_extraction import DictVectorizer

vec = DictVectorizer()
X_train = vec.fit_transform(X_train.to_dict(orient='records'))
print(vec.feature_names_)
['Age', 'Pclass', 'Sex=female', 'Sex=male']
X_test = vec.transform(X_test.to_dict(orient='records'))
from sklearn.tree import DecisionTreeClassifier

dtc = DecisionTreeClassifier()
dtc.fit(X_train, y_train)
y_predict = dtc.predict(X_test)
from sklearn.metrics import classification_report

print('The accuracy of decision tree model is', dtc.score(X_test, y_test))
print(classification_report(y_test, y_predict, target_names=['died', 'survived']))
The accuracy of decision tree model is 0.8340807174887892
              precision    recall  f1-score   support

        died       0.84      0.90      0.87       134
    survived       0.82      0.74      0.78        89

    accuracy                           0.83       223
   macro avg       0.83      0.82      0.82       223
weighted avg       0.83      0.83      0.83       223

集成模型

比较单决策树、随机森林和梯度上升决策树

# 导入数据
import pandas as pd

titanic = pd.read_csv('./Titanic.txt', sep='\t')
X = titanic[['Pclass', 'Age', 'Sex']]
Y = titanic['Survived']
X['Age'].fillna(X['Age'].mean(), inplace=True)
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.25, random_state=33)
# 转化为特征向量
from sklearn.feature_extraction import DictVectorizer

vec = DictVectorizer(sparse=False)
X_train = vec.fit_transform(X_train.to_dict(orient='records'))
X_test = vec.transform(X_test.to_dict(orient='records'))
# 单一决策树模型训练
from sklearn.tree import DecisionTreeClassifier

dtc = DecisionTreeClassifier()
dtc.fit(X_train, y_train)
dtc_y_predict = dtc.predict(X_test)
# 随机森林分类器训练
from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)
rfc_y_predict = rfc.predict(X_test)
# 梯度上升决策树训练
from sklearn.ensemble import GradientBoostingClassifier

gbc = GradientBoostingClassifier()
gbc.fit(X_train, y_train)
gbc_y_predict = gbc.predict(X_test)
# 对比集中模型的泛化能力
from sklearn.metrics import classification_report

print('The accuracy of decision tree is', dtc.score(X_test, y_test))
print(classification_report(y_test, dtc_y_predict))

print('The accuracy of random forest classifier is', rfc.score(X_test, y_test))
print(classification_report(y_test, rfc_y_predict))

print('The accuracy of gradient tree boosting is', gbc.score(X_test, y_test))
print(classification_report(y_test, gbc_y_predict))
The accuracy of decision tree is 0.8340807174887892
              precision    recall  f1-score   support

           0       0.84      0.90      0.87       134
           1       0.82      0.74      0.78        89

    accuracy                           0.83       223
   macro avg       0.83      0.82      0.82       223
weighted avg       0.83      0.83      0.83       223

The accuracy of random forest classifier is 0.8340807174887892
              precision    recall  f1-score   support

           0       0.84      0.90      0.87       134
           1       0.82      0.74      0.78        89

    accuracy                           0.83       223
   macro avg       0.83      0.82      0.82       223
weighted avg       0.83      0.83      0.83       223

The accuracy of gradient tree boosting is 0.8430493273542601
              precision    recall  f1-score   support

           0       0.84      0.91      0.87       134
           1       0.85      0.74      0.79        89

    accuracy                           0.84       223
   macro avg       0.84      0.83      0.83       223
weighted avg       0.84      0.84      0.84       223

回归预测

线性回归器

# 数据导入
from sklearn.datasets import load_boston

boston = load_boston()
print(boston.DESCR)
.. _boston_dataset:

Boston house prices dataset
---------------------------

**Data Set Characteristics:**  

    :Number of Instances: 506 

    :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.

    :Attribute Information (in order):
        - CRIM     per capita crime rate by town
        - ZN       proportion of residential land zoned for lots over 25,000 sq.ft.
        - INDUS    proportion of non-retail business acres per town
        - CHAS     Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
        - NOX      nitric oxides concentration (parts per 10 million)
        - RM       average number of rooms per dwelling
        - AGE      proportion of owner-occupied units built prior to 1940
        - DIS      weighted distances to five Boston employment centres
        - RAD      index of accessibility to radial highways
        - TAX      full-value property-tax rate per $10,000
        - PTRATIO  pupil-teacher ratio by town
        - B        1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
        - LSTAT    % lower status of the population
        - MEDV     Median value of owner-occupied homes in $1000's

    :Missing Attribute Values: None

    :Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

?
This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978.   Used in Belsley, Kuh & Welsch, 'Regression diagnostics
...', Wiley, 1980.   N.B. Various transformations are used in the table on
pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression
problems.   
     
.. topic:: References

   - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
   - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
# 预处理
from sklearn.model_selection import train_test_split

X = boston.data
y = boston.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=33)
import numpy as np

print('The max target value is', np.max(boston.target))
print('The min target value is', np.min(boston.target))
print('The average target value is', np.mean(boston.target))
The max target value is 50.0
The min target value is 5.0
The average target value is 22.532806324110677
# 数据标准化
from sklearn.preprocessing import StandardScaler

ss_X = StandardScaler()
ss_y = StandardScaler()

X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train = ss_y.fit_transform(y_train.reshape(-1, 1))
y_test = ss_y.transform(y_test.reshape(-1, 1))
# LinearRegression
from sklearn.linear_model import LinearRegression

lr = LinearRegression()
lr.fit(X_train, y_train)
lr_y_predict = lr.predict(X_test)
# SGDRegressor
from sklearn.linear_model import SGDRegressor

sgdr = SGDRegressor()
sgdr.fit(X_train, y_train)
sgdr_y_predict = sgdr.predict(X_test)
# 评估LinearReression
print('The value of default measurement of LinearRegression is', lr.score(X_test, y_test))
The value of default measurement of LinearRegression is 0.675795501452948
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

print('The value of R-squared of LinearRegression is', r2_score(y_test, lr_y_predict))
print('The mean squared error of LinearRegression is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))
print('The mean absolute error of LinearRegression is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))
The value of R-squared of LinearRegression is 0.675795501452948
The mean squared error of LinearRegression is 25.139236520353457
The mean absolute error of LinearRegression is 3.5325325437053983
# 评估SGDRegressor
print('The value of default measurement of SGDRegression is', sgdr.score(X_test, y_test))
print('The R-squared value of SGDRegressor is', r2_score(y_test, sgdr_y_predict))
print('The mean squared error of SGDRegressor is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict)))
print('The mean absolute error of SGDRegressor is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict)))
The value of default measurement of SGDRegression is 0.6676793685682791
The R-squared value of SGDRegressor is 0.6676793685682791
The mean squared error of SGDRegressor is 25.768571971072685
The mean absolute error of SGDRegressor is 3.522268742618558

支持向量机(回归)

# 继续使用上面预处理好的数据
from sklearn.svm import SVR

# 线性核函数
linear_svr = SVR(kernel='linear')
linear_svr.fit(X_train, y_train)
linear_svr_y_predict = linear_svr.predict(X_test)

# 多项式核函数
poly_svr = SVR(kernel='poly')
poly_svr.fit(X_train, y_train)
poly_svr_y_predict = poly_svr.predict(X_test)

# 径向基核函数
rbf_svr = SVR(kernel='rbf')
rbf_svr.fit(X_train, y_train)
rbf_svr_y_predict = rbf_svr.predict(X_test)
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

print('The R-squared value of linear SVR is', linear_svr.score(X_test, y_test))
print('The MAE of linear SVR is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(linear_svr_y_predict)))
print('The MSE of linear SVR is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(linear_svr_y_predict)))

print('The R-squared value of Poly SVR is', poly_svr.score(X_test, y_test))
print('The MAE of Poly SVR is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(poly_svr_y_predict)))
print('The MSE of Poly SVR is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(poly_svr_y_predict)))

print('The R-squared value of RBF SVR is', rbf_svr.score(X_test, y_test))
print('The MAE of RBF SVR is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(rbf_svr_y_predict)))
print('The MSE of RBF SVR is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(rbf_svr_y_predict)))

The R-squared value of linear SVR is 0.6506595464215357
The MAE of linear SVR is 3.432801387759994
The MSE of linear SVR is 27.088311013556197
The R-squared value of Poly SVR is 0.4036506510255131
The MAE of Poly SVR is 3.738407371046495
The MSE of Poly SVR is 46.24170053103894
The R-squared value of RBF SVR is 0.7559887416340946
The MAE of RBF SVR is 2.6067819999501114
The MSE of RBF SVR is 18.920948861538722

K近邻(回归)

# 使用平均回归
from sklearn.neighbors import KNeighborsRegressor

uni_knr = KNeighborsRegressor(weights='uniform')
uni_knr.fit(X_train, y_train)
uni_knr_y_predict = uni_knr.predict(X_test)

# 使用距离加权回归
dis_knr = KNeighborsRegressor(weights='distance')
dis_knr.fit(X_train, y_train)
dis_knr_y_predict = dis_knr.predict(X_test)
# 评估
print('The R-squared value of uniform-weighted KNeighborsRegressor is', uni_knr.score(X_test, y_test))
print('The MAE of uniform-weighted KNeighborsRegressor is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict)))
print('The MSE of uniform-weighted KNeighborsRegressor is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict)))

print('The R-squared value of distance-weighted KNeighborsRegressor is', dis_knr.score(X_test, y_test))
print('The MAE of distance-weighted KNeighborsRegressor is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict)))
print('The MSE of distance-weighted KNeighborsRegressor is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict)))
The R-squared value of uniform-weighted KNeighborsRegressor is 0.6907212176346006
The MAE of uniform-weighted KNeighborsRegressor is 2.9650393700787396
The MSE of uniform-weighted KNeighborsRegressor is 23.981877165354337
The R-squared value of distance-weighted KNeighborsRegressor is 0.7201094821421603
The MAE of distance-weighted KNeighborsRegressor is 2.801125502210876
The MSE of distance-weighted KNeighborsRegressor is 21.703073090490353

回归树

from sklearn.tree import DecisionTreeRegressor

dtr = DecisionTreeRegressor()
dtr.fit(X_train, y_train)
dtr_y_predict = dtr.predict(X_test)
# 评估
print('The R-squared value of DecisionTreeRegressor is', dtr.score(X_test, y_test))
print('The MAE of DecisionTreeRegressor is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dtr_y_predict)))
print('The MSE of DecisionTreeRegressor is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dtr_y_predict)))
The R-squared value of DecisionTreeRegressor is 0.7018637082840042
The MAE of DecisionTreeRegressor is 3.1346456692913383
The MSE of DecisionTreeRegressor is 23.117874015748036

集成模型(回归)

from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor, GradientBoostingRegressor

# 使用随机森林
rfr = RandomForestRegressor()
rfr.fit(X_train, y_train)
rfr_y_predict = rfr.predict(X_test)

# 使用极端随机森林
etr = ExtraTreesRegressor()
etr.fit(X_train, y_train)
etr_y_predict = etr.predict(X_test)

# 使用梯度上升回归树模型
gbr = GradientBoostingRegressor()
gbr.fit(X_train, y_train)
gbr_y_predict = gbr.predict(X_test)
# 评估随机森林
print('The R-squared value of RandomForestRegressor is', rfr.score(X_test, y_test))
print('The MAE of RandomForestRegressor is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(rfr_y_predict)))
print('The MSE of RandomForestRegressor is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(rfr_y_predict)))
print(np.sort([x for x in zip(rfr.feature_importances_, boston.feature_names)], axis=0))
The R-squared value of RandomForestRegressor is 0.8440895024116558
The MAE of RandomForestRegressor is 2.2735354330708666
The MSE of RandomForestRegressor is 12.089501818897643
[['0.0006952186678271629' 'AGE']
 ['0.0011740925648898665' 'B']
 ['0.0028736628406999766' 'CHAS']
 ['0.010579683068382618' 'CRIM']
 ['0.010648458290071508' 'DIS']
 ['0.010993814577649055' 'INDUS']
 ['0.011370471510572628' 'LSTAT']
 ['0.015470830834121943' 'NOX']
 ['0.018271274527914837' 'PTRATIO']
 ['0.03688007979838428' 'RAD']
 ['0.05912370039150086' 'RM']
 ['0.3438362196168467' 'TAX']
 ['0.47808249331113856' 'ZN']]
# 评估极端随机森林
print('The R-squared value of ExtraTreesRegressor is', etr.score(X_test, y_test))
print('The MAE of ExtraTreesRegressor is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(etr_y_predict)))
print('The MSE of ExtraTreesRegressor is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(etr_y_predict)))
print(np.sort([x for x in zip(etr.feature_importances_, boston.feature_names)], axis=0))
The R-squared value of ExtraTreesRegressor is 0.7888586858524715
The MAE of ExtraTreesRegressor is 2.3978267716535435
The MSE of ExtraTreesRegressor is 16.372170834645676
[['0.006161438928324989' 'AGE']
 ['0.01562649275993193' 'B']
 ['0.015793280691105457' 'CHAS']
 ['0.015911262651877756' 'CRIM']
 ['0.019522257475124195' 'DIS']
 ['0.024248474046779066' 'INDUS']
 ['0.02675902636449222' 'LSTAT']
 ['0.027354845633028434' 'NOX']
 ['0.029778329553770785' 'PTRATIO']
 ['0.037235762917298534' 'RAD']
 ['0.05366976186193688' 'RM']
 ['0.36340298961376505' 'TAX']
 ['0.3645360775025648' 'ZN']]
# 评估上升梯度回归树
print('The R-squared value of GradientBoostingRegressor is', gbr.score(X_test, y_test))
print('The MAE of GradientBoostingRegressor is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(gbr_y_predict)))
print('The MSE of GradientBoostingRegressor is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(gbr_y_predict)))
print(np.sort([x for x in zip(gbr.feature_importances_, boston.feature_names)], axis=0))
The R-squared value of GradientBoostingRegressor is 0.8352282904422077
The MAE of GradientBoostingRegressor is 2.2967895563692675
The MSE of GradientBoostingRegressor is 12.776611666402166
[['0.000813577859578548' 'AGE']
 ['0.0009379773085437085' 'B']
 ['0.002470984513191071' 'CHAS']
 ['0.0026554787648684175' 'CRIM']
 ['0.006102069186157214' 'DIS']
 ['0.009097588958970589' 'INDUS']
 ['0.011010707897691053' 'LSTAT']
 ['0.015176077585162848' 'NOX']
 ['0.027349301643875182' 'PTRATIO']
 ['0.0277504007587151' 'RAD']
 ['0.08757621162790671' 'RM']
 ['0.3493765408039815' 'TAX']
 ['0.459683083091358' 'ZN']]
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-10 13:25:17  更:2021-08-10 13:26:33 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/12 1:50:14-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码