IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> BP神经网络反向传播手动推导 -> 正文阅读

[人工智能]BP神经网络反向传播手动推导

BP神经网络过程:

基本思想

BP算法是一个迭代算法,它的基本思想如下:

  1. 将训练集数据输入到神经网络的输入层,经过隐藏层,最后达到输出层并输出结果,这就是前向传播过程。
  2. 由于神经网络的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;
  3. 在反向传播的过程中,根据误差调整各种参数的值(相连神经元的权重),使得总损失函数减小。
  4. 迭代上述三个步骤(即对数据进行反复训练),直到满足停止准则。

梯度下降法

在这里插入图片描述
紫色部分:正确结果与节点输出结果的差值,也就是误差;
红色部分:节点的激活函数,所有输入该节点的链路把经过其上的信号与链路权重做乘积后加总,再把加总结果进行激活函数运算;
绿色部分:链路w(jk)前端节点输出的信号值。

神经网络训练过程实例

  1. 第一层是输入层,包含两个神经元:i1,i2 和偏置b1;
  2. 第二层是隐藏层,包含两个神经元:h1,h2 和偏置项b2;
  3. 第三层是输出:o1,o2。
  4. 每条线上标的 wi 是层与层之间连接的权重。
  5. 激活函数是 sigmod 函数。
  6. 我们用 z 表示某神经元的加权输入和;用 a 表示某神经元的输出。
    在这里插入图片描述

Step 1 前向传播

输入层 —> 隐藏层

在这里插入图片描述

隐藏层 —> 输出层

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Step 2 反向传播

计算损失函数:

在这里插入图片描述

隐藏层 —> 输出层的权值更新

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

输入层 —> 隐藏层的权值更新

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这样,反向传播算法就完成了,最后我们再把更新的权值重新计算,不停地迭代。 在这个例子中第一次迭代之后,总误差0.298371109下降至0.291027924。
迭代10000次后,总误差为0.000035085。输出为:[0.015912196, 0.984065734]

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-10 13:25:17  更:2021-08-10 13:26:42 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 21:40:49-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码