一、数据集的划分
(一)、训练集与测试集的划分:
为了方便机器学习算法的训练以及对训练结果的评估,我们往往将所得到的数据进行划分,我们将原始数据划分为两部分:训练集、测试集。一般情况下,训练集与测试集的占比往往为:0.7:0.3;0.8:0.2;0.75:0.25。在日常训练过程中0.75:0.25的占比使用相对多一点。
(二)、sklearn的数据集划分API
sklearn中数据集划分得API为sklearn.model_selection.train_test_split。下面为简单的演示代码。
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
def data():
"""
调取sklearn中的鸢尾花数据集,并进行数据的处理
"""
# 实例化数据集
ir = load_iris()
# 划分数据集
x_train, x_test, y_train, y_test = train_test_split(ir.data, ir.target, test_size=0.25)
"""函数参数解释:
ir.data为数据集的特征值
ir.target为数据集的目标值
test_size为数据集划分后测试集所占比例
函数输出解释:
函数输出的顺序为训练集的特征值、测试集的特征值、训练集的目标值、测试集的目标值
"""
# 打印划分后的训练集和测试集
print("划分后的训练集为:\n", "特征值为:\n", x_train, "\n", "目标值为:\n", y_train)
print("划分后的测试集为:\n", "特征值为:\n", x_test, "\n", "目标值为:\n", y_test)
运行后的结果:
划分后的训练集为:
特征值为:
[[5.5 2.5 4. 1.3]
[5. 2. 3.5 1. ]
[6.4 2.9 4.3 1.3]
[6.7 3. 5.2 2.3]
[5. 3.4 1.5 0.2]
[7. 3.2 4.7 1.4]
[4.9 3. 1.4 0.2]
[6.3 3.3 6. 2.5]
[4.5 2.3 1.3 0.3]
[7.7 2.8 6.7 2. ]
[5.4 3.7 1.5 0.2]
[5.8 4. 1.2 0.2]
[5. 3.6 1.4 0.2]
[5.1 3.3 1.7 0.5]
[5.7 2.8 4.5 1.3]
[5.1 2.5 3. 1.1]
[6.3 3.3 4.7 1.6]
[4.6 3.2 1.4 0.2]
[6.1 2.9 4.7 1.4]
[5. 3.5 1.3 0.3]
[5.4 3.9 1.7 0.4]
[6.4 2.8 5.6 2.2]
[5.8 2.6 4. 1.2]
[5.5 2.6 4.4 1.2]
[6.4 2.7 5.3 1.9]
[5.5 2.3 4. 1.3]
[5.7 4.4 1.5 0.4]
[6. 2.2 4. 1. ]
[6.4 3.2 4.5 1.5]
[5.7 2.8 4.1 1.3]
[4.8 3. 1.4 0.1]
[5.8 2.8 5.1 2.4]
[5.1 3.8 1.5 0.3]
[5.1 3.4 1.5 0.2]
[7.9 3.8 6.4 2. ]
[5.1 3.5 1.4 0.3]
[6.3 2.7 4.9 1.8]
[6.7 2.5 5.8 1.8]
[4.7 3.2 1.6 0.2]
[7.1 3. 5.9 2.1]
[4.4 3.2 1.3 0.2]
[6.2 2.9 4.3 1.3]
[5. 2.3 3.3 1. ]
[6.3 2.5 4.9 1.5]
[5.7 3. 4.2 1.2]
[4.9 3.6 1.4 0.1]
[5.4 3.4 1.7 0.2]
[5.4 3. 4.5 1.5]
[6.7 3. 5. 1.7]
[5.5 2.4 3.7 1. ]
[5.2 3.4 1.4 0.2]
[5.7 2.6 3.5 1. ]
[7.3 2.9 6.3 1.8]
[6.7 3.1 5.6 2.4]
[6.1 3. 4.6 1.4]
[6.7 3.3 5.7 2.1]
[6.6 2.9 4.6 1.3]
[6.5 3. 5.8 2.2]
[7.2 3.6 6.1 2.5]
[5.2 4.1 1.5 0.1]
[5.1 3.5 1.4 0.2]
[6. 3. 4.8 1.8]
[4.6 3.4 1.4 0.3]
[5.6 2.8 4.9 2. ]
[6.8 2.8 4.8 1.4]
[6. 2.9 4.5 1.5]
[7.4 2.8 6.1 1.9]
[5.6 2.9 3.6 1.3]
[6.1 2.6 5.6 1.4]
[6.7 3.1 4.4 1.4]
[5.1 3.8 1.6 0.2]
[6.6 3. 4.4 1.4]
[4.3 3. 1.1 0.1]
[5.2 3.5 1.5 0.2]
[7.2 3.2 6. 1.8]
[7.6 3. 6.6 2.1]
[6.3 2.9 5.6 1.8]
[6.3 2.5 5. 1.9]
[4.8 3.4 1.9 0.2]
[6.7 3.3 5.7 2.5]
[6.4 3.1 5.5 1.8]
[4.6 3.6 1. 0.2]
[5.1 3.7 1.5 0.4]
[4.9 2.5 4.5 1.7]
[6.2 2.2 4.5 1.5]
[6. 3.4 4.5 1.6]
[4.8 3. 1.4 0.3]
[5.1 3.8 1.9 0.4]
[6.9 3.1 4.9 1.5]
[5.9 3.2 4.8 1.8]
[5.6 2.5 3.9 1.1]
[4.8 3.1 1.6 0.2]
[5.7 2.5 5. 2. ]
[6.3 3.4 5.6 2.4]
[7.7 3.8 6.7 2.2]
[5. 3.2 1.2 0.2]
[6.7 3.1 4.7 1.5]
[5.9 3. 5.1 1.8]
[6.4 3.2 5.3 2.3]
[5.8 2.7 5.1 1.9]
[5. 3.5 1.6 0.6]
[4.6 3.1 1.5 0.2]
[5.8 2.7 4.1 1. ]
[4.8 3.4 1.6 0.2]
[6.3 2.3 4.4 1.3]
[5.6 2.7 4.2 1.3]
[6.8 3. 5.5 2.1]
[5.4 3.9 1.3 0.4]
[5. 3. 1.6 0.2]
[4.9 3.1 1.5 0.2]
[5.4 3.4 1.5 0.4]
[4.7 3.2 1.3 0.2]]
目标值为:
[1 1 1 2 0 1 0 2 0 2 0 0 0 0 1 1 1 0 1 0 0 2 1 1 2 1 0 1 1 1 0 2 0 0 2 0 2
2 0 2 0 1 1 1 1 0 0 1 1 1 0 1 2 2 1 2 1 2 2 0 0 2 0 2 1 1 2 1 2 1 0 1 0 0
2 2 2 2 0 2 2 0 0 2 1 1 0 0 1 1 1 0 2 2 2 0 1 2 2 2 0 0 1 0 1 1 2 0 0 0 0
0]
划分后的测试集为:
特征值为:
[[6.5 3. 5.2 2. ]
[5.5 3.5 1.3 0.2]
[6.5 2.8 4.6 1.5]
[6. 2.2 5. 1.5]
[5.9 3. 4.2 1.5]
[5.6 3. 4.1 1.3]
[5. 3.4 1.6 0.4]
[5.8 2.7 5.1 1.9]
[5.5 4.2 1.4 0.2]
[6.3 2.8 5.1 1.5]
[5.8 2.7 3.9 1.2]
[5.7 2.9 4.2 1.3]
[6.4 2.8 5.6 2.1]
[6.1 2.8 4. 1.3]
[7.7 3. 6.1 2.3]
[5.2 2.7 3.9 1.4]
[5.6 3. 4.5 1.5]
[6.1 3. 4.9 1.8]
[6.5 3. 5.5 1.8]
[6.1 2.8 4.7 1.2]
[6.8 3.2 5.9 2.3]
[6.5 3.2 5.1 2. ]
[6.9 3.1 5.4 2.1]
[5.3 3.7 1.5 0.2]
[6.2 2.8 4.8 1.8]
[6.2 3.4 5.4 2.3]
[5. 3.3 1.4 0.2]
[7.7 2.6 6.9 2.3]
[4.9 3.1 1.5 0.1]
[4.4 2.9 1.4 0.2]
[6.9 3.1 5.1 2.3]
[6.9 3.2 5.7 2.3]
[7.2 3. 5.8 1.6]
[6. 2.7 5.1 1.6]
[5.5 2.4 3.8 1.1]
[4.9 2.4 3.3 1. ]
[5.7 3.8 1.7 0.3]
[4.4 3. 1.3 0.2]]
目标值为:
[2 0 1 2 1 1 0 2 0 2 1 1 2 1 2 1 1 2 2 1 2 2 2 0 2 2 0 2 0 0 2 2 2 1 1 1 0
0]
从结果中我们可以看出,以上演示实现了将原始数据集按照所设定的比例进行了随机划分。
|