IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【深度好文】Python图像分割之区域增长法 -> 正文阅读

[人工智能]【深度好文】Python图像分割之区域增长法

1 引言

区域增长法是一种已受到计算机视觉界十分关注的图像分割方法。它是以区域为处理对象的,它考虑到区域内部和区域之间的同异性,尽量保持区域中像素的临近性和一致性的统一。这样就可以更好地分辨图像真正的边界。

请添加图片描述

基于区域的分割方法的关键在于定义一个一致性准则,用来判断两个邻接的区域是否可以合并,一致则将两区域合并,直到不能合并为止。区域增长的方法是在图像上选定一个种子点,记录下该点的灰度值,作为一致性判断的标准阈值,此外还需要定义一个标准差。
算法的主要过程是,依次用图像的每一个像素的灰度值和标准阈值相减,判断结果是否小于标准差,是则将该点和种子点合并,不是则保持像素点的灰度值不变。这样处理后的图像就是用区域分割法处理后的边缘分割图像。

2 举例

下面我们通过一个例子来进行详细的解释。
在这里插入图片描述
上图示意的是区域增长的过程,图中的方格表示图像的像素点,方格中的数值表示像素点的灰度值。(a)表示开始选取的生长点,在生长的过程中,每个生长点都将本身上下左右4个像素点和初试选取的生长点比较灰度值,如果灰度值的差的绝对值在设定的阈值内,则认为这些点是属于相同区域并将其合并,否则将灰度差大于设定阈值的点删除,重复检查区域内的像素点,直到没有像素点可以合并位置。不妨设上图的阈值为2,(b)中4个点和初始点的灰度差都不大于2,所以合并;(c)中只有部分满足条件,所以只合并满足条件的像素点,并且(c)区域周围邻域中没有点再满足条件,因此生长结束。

3 算法步骤

通过上述示例,我们可以总结出区域增长法的一般步骤如下:
1)对图像自上而下,自左而右扫描,找到第1个还没有访问过的像素, 设该像素为(x0, y0);
2)以(x0, y0)为中心, 考虑(x0, y0)的8邻域像素(x, y),如果其邻域满足生长准则, 将(x, y)与(x0, y0)合并(在同一区域内), 同时将(x, y)压入堆栈;
3)从堆栈中取出一个像素, 把它当作(x0, y0)返回到上一步骤;
4)当堆栈为空时 返回到步骤1;
5)重复步骤1 - 4直到图像中的每个点都被访问过时,算法结束。

4 代码实现

1 ) 读入彩色图像

img_name = "./20210813/sample3.png"
img = cv2.imread(img_name)

结果如下:
请添加图片描述

  1. 灰度化
gray_img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

结果如下:
请添加图片描述

3)二值化

def get_binary_img(img):
    # gray img to bin image
    bin_img = np.zeros(shape=(img.shape), dtype=np.uint8)
    h = img.shape[0]
    w = img.shape[1]
    for i in range(h):
        for j in range(w):
            bin_img[i][j] = 255 if img[i][j] > 127 else 0
    return bin_img
# 调用
bin_img = get_binary_img(gray_img)

结果如下:
请添加图片描述

4)选取初始种子点
这里选择三个种子点作为初始点,种子点的坐标如下图紫色十字所示。

out_img = np.zeros(shape=(bin_img.shape), dtype=np.uint8)
# 选择初始3个种子点
seeds = [(176,255),(229,405),(347,165)]
for seed in seeds:
    x = seed[0]
    y = seed[1]
    out_img[y][x] = 255

请添加图片描述

5)区域增长结果

# 8 邻域
directs = [(-1,-1), (0,-1), (1,-1), (1,0), (1,1), (0,1),(-1,1),(-1,0)]
visited = np.zeros(shape=(bin_img.shape), dtype=np.uint8)
while len(seeds):
	seed = seeds.pop(0)
    x = seed[0]
    y = seed[1]
    # visit point (x,y)
    visited[y][x] = 1
    for direct in directs:
    	cur_x = x + direct[0]
    	cur_y = y + direct[1]
    	# 非法
        if cur_x <0 or cur_y<0 or cur_x >= w or cur_y >=h :
        	continue
        # 没有访问过且属于同一目标
        if (not visited[cur_y][cur_x]) and (bin_img[cur_y][cur_x]==bin_img[y][x]) :
        	out_img[cur_y][cur_x] = 255
            visited[cur_y][cur_x] = 1
            seeds.append((cur_x,cur_y))

结果如下:

请添加图片描述

6)获取目标
以上步得到的二值图作为mask,去彩色图中取对应的部分即可。代码如下:

bake_img = img.copy()
h = bake_img.shape[0]
w = bake_img.shape[1]
for i in range(h):
	for j in range(w):
		if out_img[i][j] != 255:
        	bake_img[i][j][0] = 0
            bake_img[i][j][1] = 0
            bake_img[i][j][2] = 0

结果如下:

请添加图片描述

5 总结

通过上述简单步骤,我们实现了通过区域增长法来提取前景目标,相应的处理效果如下:

请添加图片描述

上图中左侧为原图,其中紫色十字为我们选的初始种子点,中间为我们区域增长后的结果图,右侧为我们回到原图上得到的区域分割后的结果图。

您学肥了嘛?


关注公众号《AI算法之道》,获取更多AI算法资讯。

在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-14 14:01:52  更:2021-08-14 14:02:58 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 20:28:41-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码