IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 深度学习之基于DCGAN实现动漫人物的生成 -> 正文阅读

[人工智能]深度学习之基于DCGAN实现动漫人物的生成

:因为硬件原因,这次的实验并没有生成图片,但是代码应该是没有问题的,可以参考学习一下。
本次基于DCGAN实现动漫人物的生成。最终的效果可以参考大神K同学啊的博客。与上篇文章基于DCGAN生成手写数字的步骤基本一致。

1.导入库

import tensorflow as tf
import numpy as np
import glob,imageio,os,PIL,pathlib
import matplotlib.pyplot as plt

# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

2.数据准备

data_dir = "E:/tmp/.keras/datasets/car_face_photos"
data_dir = pathlib.Path(data_dir)

pic_paths = list(data_dir.glob('*'))
pic_paths = [str(path) for path in pic_paths]
img_count = len(list(pic_paths))#共21551张图片
plt.figure(figsize=(10, 5))
plt.suptitle("数据示例", fontsize=15)

for i in range(40):
    plt.subplot(5, 8, i + 1)
    plt.xticks([])
    plt.yticks([])

    # 显示图片
    images = plt.imread(pic_paths[i])
    plt.imshow(images)

plt.show()

查看图片:
在这里插入图片描述
数据预处理:
1.归一化到[-1,1]之间
2.调整图片大小为[64,64]
3.将数据按照batch_size划分开,并打乱

#数据处理
def preprocess_image(image):
    image = tf.image.decode_jpeg(image,channels=3)
    image = tf.image.resize(image,[64,64])
    return (image - 127.5)/127.5
def load_and_preprocess_image(path):
    image = tf.io.read_file(path)
    return preprocess_image(image)

path_ds = tf.data.Dataset.from_tensor_slices(pic_paths)
image_ds = path_ds.map(load_and_preprocess_image,num_parallel_calls=tf.data.experimental.AUTOTUNE)

buffer_size = 60000
batch_size = 256
dataset = image_ds.shuffle(buffer_size).batch(batch_size)

3.生成器与判别器的构建

生成器采用tf.keras.layers.Conv2DTranspose(上采样层)从噪声数据中产生图片。以一个使用该种子作为输入的 Dense 层开始,然后多次上采样直到达到所期望的 64x64x3 的图片尺寸。模型如下所示:
在这里插入图片描述
除了最后一层使用tanh作为激活函数外,其余的都采用LeakyReLU作为激活函数。

def Geberator_model():
    model = tf.keras.Sequential([])
    model.add(tf.keras.layers.Dense(4*4*1024,use_bias=False,input_shape=(100,)))
    model.add(tf.keras.layers.BatchNormalization())
    model.add(tf.keras.layers.LeakyReLU())
    model.add(tf.keras.layers.Reshape((4,4,1024)))
    assert model.output_shape == (None,4,4,1024)

    #1
    model.add(tf.keras.layers.Conv2DTranspose(512,(5,5),strides=(2,2),padding="same",use_bias=False))
    assert model.output_shape == (None,8,8,512)
    model.add(tf.keras.layers.BatchNormalization())
    model.add(tf.keras.layers.LeakyReLU())
    #2
    model.add(tf.keras.layers.Conv2DTranspose(256, (5, 5), strides=(2, 2), padding="same", use_bias=False))
    assert model.output_shape == (None, 16, 16, 256)
    model.add(tf.keras.layers.BatchNormalization())
    model.add(tf.keras.layers.LeakyReLU())
    #3
    model.add(tf.keras.layers.Conv2DTranspose(128, (5, 5), strides=(2, 2), padding='same', use_bias=False))
    assert model.output_shape == (None, 32, 32, 128)
    model.add(tf.keras.layers.BatchNormalization())
    model.add(tf.keras.layers.LeakyReLU())
    #4
    model.add(tf.keras.layers.Conv2DTranspose(3, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
    assert model.output_shape == (None, 64, 64, 3)

    return model
generator = Geberator_model()
generator.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 16384)             1638400   
_________________________________________________________________
batch_normalization (BatchNo (None, 16384)             65536     
_________________________________________________________________
leaky_re_lu (LeakyReLU)      (None, 16384)             0         
_________________________________________________________________
reshape (Reshape)            (None, 4, 4, 1024)        0         
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 8, 8, 512)         13107200  
_________________________________________________________________
batch_normalization_1 (Batch (None, 8, 8, 512)         2048      
_________________________________________________________________
leaky_re_lu_1 (LeakyReLU)    (None, 8, 8, 512)         0         
_________________________________________________________________
conv2d_transpose_1 (Conv2DTr (None, 16, 16, 256)       3276800   
_________________________________________________________________
batch_normalization_2 (Batch (None, 16, 16, 256)       1024      
_________________________________________________________________
leaky_re_lu_2 (LeakyReLU)    (None, 16, 16, 256)       0         
_________________________________________________________________
conv2d_transpose_2 (Conv2DTr (None, 32, 32, 128)       819200    
_________________________________________________________________
batch_normalization_3 (Batch (None, 32, 32, 128)       512       
_________________________________________________________________
leaky_re_lu_3 (LeakyReLU)    (None, 32, 32, 128)       0         
_________________________________________________________________
conv2d_transpose_3 (Conv2DTr (None, 64, 64, 3)         9600      
=================================================================
Total params: 18,920,320
Trainable params: 18,885,760
Non-trainable params: 34,560
_________________________________________________________________

判别器为基于CNN的图片分类器

#判别器的构建
def Discriminator_model():
    model = tf.keras.Sequential([
        tf.keras.layers.Conv2D(128,(5,5),strides=(2,2),padding="same",input_shape=[64,64,1]),
        tf.keras.layers.LeakyReLU(),
        tf.keras.layers.Dropout(0.3),

        tf.keras.layers.Conv2D(128,(5,5),strides=(2,2),padding="same"),
        tf.keras.layers.LeakyReLU(),
        tf.keras.layers.Dropout(0.3),

        tf.keras.layers.Conv2D(256, (5, 5), strides=(2, 2), padding="same"),
        tf.keras.layers.LeakyReLU(),
        tf.keras.layers.Dropout(0.3),

        tf.keras.layers.Conv2D(512, (5, 5), strides=(2, 2), padding="same"),
        tf.keras.layers.LeakyReLU(),
        tf.keras.layers.Dropout(0.3),

        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(1,activation='sigmoid')
    ])
    return model
discriminator = Discriminator_model()
discriminator.summary()
Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 32, 32, 128)       3328      
_________________________________________________________________
leaky_re_lu_4 (LeakyReLU)    (None, 32, 32, 128)       0         
_________________________________________________________________
dropout (Dropout)            (None, 32, 32, 128)       0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 16, 16, 128)       409728    
_________________________________________________________________
leaky_re_lu_5 (LeakyReLU)    (None, 16, 16, 128)       0         
_________________________________________________________________
dropout_1 (Dropout)          (None, 16, 16, 128)       0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 8, 8, 256)         819456    
_________________________________________________________________
leaky_re_lu_6 (LeakyReLU)    (None, 8, 8, 256)         0         
_________________________________________________________________
dropout_2 (Dropout)          (None, 8, 8, 256)         0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 4, 4, 512)         3277312   
_________________________________________________________________
leaky_re_lu_7 (LeakyReLU)    (None, 4, 4, 512)         0         
_________________________________________________________________
dropout_3 (Dropout)          (None, 4, 4, 512)         0         
_________________________________________________________________
flatten (Flatten)            (None, 8192)              0         
_________________________________________________________________
dense_1 (Dense)              (None, 1)                 8193      
=================================================================
Total params: 4,518,017
Trainable params: 4,518,017
Non-trainable params: 0
_________________________________________________________________

4.loss值与优化器

计算交叉熵

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

因为分为判别器的生成器,因此loss值的计算方式也是不同的。
判别器的loss值:判断真实图片为1的loss与判断生成图片为0的loss之和。因为判别器希望将真实图片判别为1,将生成图片判别为0.
生成器的loss值:判断生成图片为1的loss。因为生成器希望生成的图片是真实图片,即判别为1.

def Discriminator_loss(real_out,fake_out):
    real_loss = cross_entropy(tf.ones_like(real_out),real_out)
    fake_loss = cross_entropy(tf.zeros_like(fake_out),fake_out)
    return real_loss+fake_loss
def Generator_loss(fake_out):
    return cross_entropy(tf.ones_like(fake_out),fake_out)

优化器也分为两个:

generator_opt = tf.keras.optimizers.Adam(learning_rate=1e-4)
discriminator_opt = tf.keras.optimizers.Adam(learning_rate=1e-4)

参数设置

epochs = 600
noise_dim = 100
num_exp_to_generate = 16

seed = tf.random.normal([num_exp_to_generate,noise_dim])

5.批次训练

训练循环在生成器接收到一个随机种子作为输入时开始。该种子用于生产一张图片。判别器随后被用于区分真实图片(选自训练集)和伪造图片(由生成器生成)。针对这里的每一个模型都计算损失函数,并且计算梯度用于更新生成器与判别器。

def train_step(images):
    noise = tf.random.normal([batch_size,noise_dim])#生成一个batch_size*noise_dim的数据,相当于生成了batch_size个长度为100的随机向量
    with tf.GradientTape() as gen_tape,tf.GradientTape() as dis_tape:#两个Tape,一个代表生成器,一个代表判别器。
        real_out = discriminator(images,training = True)#利用判别器对真实的图片进行训练,得到一个model
        gen_image = generator(noise,training = True)#利用生成器对噪声数据生成图片
        fake_out = discriminator(gen_image, training=True)#利用判别器对生成的图片进行训练

        gen_loss = Generator_loss(fake_out)#利用判别器对生成图片的判断计算生成器的loss值
        dis_loss = Discriminator_loss(real_out,fake_out)##利用判别器对生成图片和真实图片的判断计算判别器的loss值
    gradient_gen = gen_tape.gradient(gen_loss,generator.trainable_variables)#根据生成器的loss值和网络模型计算梯度
    gradient_dis = dis_tape.gradient(dis_loss, discriminator.trainable_variables)#根据判别器的loss值和网络模型计算梯度
    Generator_opt.apply_gradients(zip(gradient_gen,generator.trainable_variables))#根据梯度对生成器进行梯度更新
    Discriminator_opt.apply_gradients(zip(gradient_dis,discriminator.trainable_variables))#根据梯度对判别器进行梯度更新

可视化图片并保存到本地

def Generator_plot_image(gen_model,test_noise,epoch):
    pre_images = gen_model.predict(test_noise,training = False)
    fig = plt.figure(figsize=(4,4))
    for i in range(pre_images.shape[0]):
        plt.subplot(4,4,i+1)
        plt.imshow((pre_images[i,:,:,0]+1)/2)
        plt.axis('off')
    fig.savefig("E:/tmp/.keras/datasets/cartoon_photos_gen_DCGAN/%05d.png" % epoch)
    plt.close()

训练模型:

def train(dataset,epochs):
    for epoch in range(epochs):
        for image_batch in dataset:
            train_step(image_batch)
        print('.',end='')
    print()
    Generator_plot_image(generator,seed,epoch)
train(dataset,epochs)

也可以用来生成其他的图片,可以起到数据增强的效果。
努力加油a啊

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-15 15:32:20  更:2021-08-15 15:38:04 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/12 1:01:49-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码