IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 机器学习-XGBoost算法 -> 正文阅读

[人工智能]机器学习-XGBoost算法

1、集成算法中主要分为bagging算法与boosting算法

BaggingBoosting
随机有放回的取样每一轮训练的样本是固定的,改变的是买个样的权重
均匀取样,每个样本的权重相同根据错误率调整样本权重,错误率越大的样本权重会变大
预测函数权值相同误差越小的预测函数其权值越大
各个预测函数可以并行生成各个预测函数必须按照顺序迭代生成

2、为什么XGBoot算法这么流行

  • 运行速度快且效率及准确率较高
  • 使用并行化计算
  • 比其他算法强
  • 可调节的参数多

3、部分参数含义

  • max_depth:树的深度
  • subsample:用多少个子样本去训练树
  • colsample_bytree:构建每棵树需采用的特征数量
  • n_estimators:树的数量
  • gamma[默认0]:在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。 这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的
  • alpha[默认1]:权重的L1正则化项。(和Lassoregression类似)。 可以应用在很高维度的情况下,使得算法的速度更快。
  • lambda[默认1]:权重的L2正则化项。(和Ridgeregression类似)。 这个参数是用来控制XGBoost的正则化部分的。虽然大部分数据科学家很少用到这个参数,但是这个参数在减少过拟合上还是可以挖掘出更多用处的。
  • objective[默认reg:linear]:这个参数定义需要被最小化的损失函数。最常用的值有:
    binary:logistic
    binary:logitraw
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-16 11:44:45  更:2021-08-16 11:45:52 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/12 1:05:58-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码