IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 机器学习相关的技术 -> 正文阅读

[人工智能]机器学习相关的技术

supervised learning(监督学习)

  • 监督学习的问题是我们需要大量的training data

Regression(回归)

回归(Regression):我们在做预测时会用到。首先我们要准备一些训练资料(Training Data),基于这些过去得数据,模拟出一个function,输出是一个预测未来得数值(scalar)

?Classification(分类)

Regression和Classification的差别就是我们要机器输出的东西的类型是不一样。在Regression中机器输出的是一个数值,在Classification里面机器输出的是类别。

种类:

  • 二分类:输出的是是或否(Yes or No)
  • 多分类:让机器做一个选择题,等于是给他数个选项,每个选项都是一个类别,让他从数个类别里选择正确的类别。

举例:

  • 二分类可以鉴别垃圾邮件,将其放到垃圾箱。那怎么做到这件事呢?其实就是需要一个function,它的输入是一个邮件,输出为邮件是否为垃圾邮件。
    • 你要训练这样的function很简单,给他一大堆的Data并告诉它,现在输入这封邮件,你应该说是垃圾邮件,输入这封邮件,应该说它不是垃圾邮件。你给他够多的这种资料去学,它就可以自动找出一个可以侦测垃圾邮件的function。
  • 现在网络上有非常非非常多的新闻,也许没有人会把所有的新闻看完,但希望机器自动帮一把新闻做分类。怎么做呢?你需要的是一个function,它的输入是一则新闻,输出是新闻属于哪个类别,你要做的事情就是解这个选择题。
    • 你要训练这样的function很简单,给他一大堆的Data并告诉它,现在输入这封邮件,你应该说是垃圾邮件,输入这封邮件,应该说它不是垃圾邮件。你给他够多的这种资料去学,它就可以自动找出一个可以侦测垃圾邮件的function。

Model(模型)

非线性模型:Deep learning、SVM、decision tree、K-NN...

Semi-supervised Learning(半监督学习)

在监督学习中,我们需要告诉机器function的input和output是什么。这个output往往没有办法用很自然的方式取得,需要人工的力量把它标注出来,这些function的output叫做label。

半监督学习得目的是减少减少label需要的量。

举例子:假设你先想让机器鉴别猫狗的不同。你想做一个分类器让它告诉你,图片上是猫还是狗。你有少量的猫和狗的labelled data,但是同时你又有大量的Unlabeled data,但是你没有力气去告诉机器说哪些是猫哪些是狗。在半监督学习的技术中,这些没有label的data,他可能也是对学习有帮助。

Transfer Learning(迁移学习)

假设我们要做猫和狗的分类问题,我们也一样,只有少量的有label的data。但是我们现在有大量的data,这些大量的data中可能有label也可能没有label。但是他跟我们现在要考虑的问题是没有什么特别的关系的,我们要分辨的是猫和狗的不同,但是这边有一大堆其他动物的图片还是动画图片(凉宫春日,御坂美琴)你有这一大堆不相干的图片,它到底可以带来什么帮助。这个就是迁移学习要讲的问题。

无监督学习(Unsupervised Learning)

如果在完全没有任何label的情况下,到底机器可以学到什么样的事情。举例来说,如果我们给机器看大量的文章(在去网络上收集站文章很容易,网络上随便爬就可以)让机器看过大量的文章以后,它到底可以学到什么事情。

structure learning(结构学习)

structured learning 中让机器输出的是要有结构性的,举例来说:在语音辨识里面,机器输入是声音讯号,输出是一个句子。句子是要很多词汇拼凑完成。它是一个有结构性的object。或者是说在机器翻译里面你说一句话,你输入中文希望机器翻成英文,它的输出也是有结构性的。或者你今天要做的是人脸辨识,来给机器看张图片,它会知道说最左边是长门,中间是凉宫春日,右边是宝玖瑠。然后机器要把这些东西标出来,这也是一个structure learning问题。

reinforcement learning(强化学习)

在reinforcement learning里面,我们没有告诉机器正确的答案是什么,机器所拥有的只有一个分数,就是他做的好还是不好。若我们现在要用reinforcement learning方法来训练一个聊天机器人的话,他训练的方法会是这样:你就把机器发到线下,让他的和面进来的客人对话,然后想了半天以后呢,最后仍旧勃然大怒把电话挂掉了。那机器就学到一件事情就是刚才做错了。但是他不知道哪边错了,它就要回去自己想道理,是一开始就不应该打招呼吗?还是中间不应该在骂脏话了之类。它不知道,也没有人告诉它哪里做的不好,它要回去反省检讨哪一步做的不好。机器要在reinforcement learning的情况下学习,机器是非常intelligence的。 reinforcement learning也是比较符合我们人类真正的学习的情景,这是你在学校里面的学习老师会告诉你答案,但在真实社会中没人回告诉你正确答案。你只知道你做得好还是做得不好,如果机器可以做到reinforcement learning,那确实是比较intelligence。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-17 15:24:00  更:2021-08-17 15:26:23 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/1 12:33:27-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码