IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 2021-08-18 -> 正文阅读

[人工智能]2021-08-18

Task02:学习Attention和Transformer


一、

问题1: Transformer中的softmax计算为什么需要除以 d k d_k dk??
为了剔除向量维度影响,避免向量维度越大分数叠加越高的不合理性

问题2: Transformer中attention score计算时候如何mask掉padding位置?
在训练的过程中,自然语言数据往往都是以Batch的形式输入进的模型,而一个batch中的每一句话不能保证长度都是一样的,所以需要使用PADDING的方式将所有的句子都补全到最长的长度,比如拿0进行填充,但是这种用0填充的位置的信息是完全没有意义的,因此我们希望这个位置不参与后期的反向传播过程。以此避免最后影响模型自身的效果,因此提出了在训练时将补全的位置给Mask掉的做法。而在Self-attention的计算当中,我们自然也不希望有效词的注意力集中在这些没有意义的位置上,因此使用了PADDING MASK的方式。PADDING MASK在attention的计算过程中处于softmax之前,通过PADDING MASK的操作,使得补全位置上的值成为一个非常大的负数(可以是负无穷),这样的话,经过Softmax层的时候,这些位置上的概率就是0。以此操作就相当于把补全位置的无用信息给遮蔽掉了

问题3: 为什么Transformer中加入了positional embedding?
为了使模型能够感知到输入的顺序,可以给每个单词添加有关其在句子中位置的信息,这样的信息就是位置编码(positional embedding, PE)
循环神经网络RNN本质上考虑到了句子中单词的顺序。因为RNN以顺序的方式逐字逐句地解析一个句子,这将把单词的顺序整合到RNN中。
Transformer使用MHSA(Multi-Head Self-Attention),从而避免使用了RNN的递归方法,加快了训练时间,同时,它可以捕获句子中的长依赖关系,能够应对更长的输入。当句子中的每个单词同时经过Transformer的Encoder/Decoder堆栈时,模型本身对于每个单词没有任何位置/顺序感 (permutation invariance)。 因此,仍然需要一种方法来将单词的顺序信息融入到模型中。

二、Attention

1.seq2seq模型
在这里插入图片描述1

seq2seq模型是由编码器(Encoder)和解码器(Decoder)组成的。其中,编码器会处理输入序列中的每个元素,把这些信息转换为一个向量(称为上下文(context))。当我们处理完整个输入序列后,编码器把上下文(context)发送给解码器,解码器开始逐项生成输出序列中的元素。
这种机制,同样适用于机器翻译。

在机器翻译任务中,上下文(context)是一个向量(基本上是一个数字数组)。编码器和解码器在Transformer出现之前一般采用的是循环神经网络。

上下文context对应图里中间一个浮点数向量。在下文中,我们会可视化这些向量,使用更明亮的色彩来表示更高的值
上下文context对应图里中间一个浮点数向量。在下文中,我们会可视化这些向量,使用更明亮的色彩来表示更高的值

你可以在编写seq2seq模型的时候设置上下文向量的长度。这个长度是基于编码器 RNN 的隐藏层神经元的数量。上图展示了长度为 4 的向量,但在实际应用中,上下文向量的长度可能是 256,512 或者 1024。

根据设计,RNN 在每个时间步接受 2 个输入:

输入序列中的一个元素(在解码器的例子中,输入是指句子中的一个单词,最终被转化成一个向量)
一个 hidden state(隐藏层状态,也对应一个向量)
如何把每个单词都转化为一个向量呢?我们使用一类称为 “word embedding” 的方法。这类方法把单词转换到一个向量空间,这种表示能够捕捉大量单词之间的语义信息

让我们继续从高层次来理解注意力模型。一个注意力模型不同于经典的序列到序列(seq2seq)模型,主要体现在 2 个方面:

首先,编码器会把更多的数据传递给解码器。编码器把所有时间步的 hidden state(隐藏层状态)传递给解码器,而不是只传递最后一个 hidden state(隐藏层状态): 动态图: 更多的信息传递给decoder

第二,注意力模型的解码器在产生输出之前,做了一个额外的处理。为了把注意力集中在与该时间步相关的输入部分。解码器做了如下的处理:

查看所有接收到的编码器的 hidden state(隐藏层状态)。其中,编码器中每个 hidden state(隐藏层状态)都对应到输入句子中一个单词。
给每个 hidden state(隐藏层状态)一个分数(我们先忽略这个分数的计算过程)。
将每个 hidden state(隐藏层状态)乘以经过 softmax 的对应的分数,从而,高分对应的 hidden state(隐藏层状态)会被放大,而低分对应的 hidden state(隐藏层状态)会被缩小。
动态图:解决码器attention

这个加权平均的步骤是在解码器的每个时间步做的。 现在,让我们把所有内容都融合到下面的图中,来看看注意力模型的整个过程:

注意力模型的解码器 RNN 的输入包括:一个embedding 向量,和一个初始化好的解码器 hidden state(隐藏层状态)。
RNN 处理上述的 2 个输入,产生一个输出和一个新的 hidden state(隐藏层状态 h4 向量),其中输出会被忽略。
注意力的步骤:我们使用编码器的 hidden state(隐藏层状态)和 h4 向量来计算这个时间步的上下文向量(C4)。
我们把 h4 和 C4 拼接起来,得到一个向量。
我们把这个向量输入一个前馈神经网络(这个网络是和整个模型一起训练的)。
前馈神经网络的输出表示这个时间步输出的单词。

三、transformer

首先,我们将整个模型视为黑盒。在机器翻译任务中,接收一种语言的句子作为输入,然后将其翻译成其他语言输出。
在这里插入图片描述
中间部分的 Transformer 可以拆分为 2 部分:左边是编码部分(encoding component),右边是解码部分(decoding component)。

其中编码部分是多层的编码器(Encoder)组成(Transformer 的论文中使用了 6 层编码器,这里的层数 6 并不是固定的,你也可以根据实验效果来修改层数)。同理,解码部分也是由多层的解码器(Decoder)组成(论文里也使用了 6 层的解码器)。

图:翻译例子

encoder由多层编码器组成,每层编码器在结构上都是一样的,但不同层编码器的权重参数是不同的。每层编码器里面,主要由以下两部分组成

Self-Attention Layer
Feed Forward Neural Network(前馈神经网络,缩写为 FFNN)

encoder
图:单层transformer encoder

输入编码器的文本数据,首先会经过一个 Self Attention 层,这个层处理一个词的时候,不仅会使用这个词本身的信息,也会使用句子中其他词的信息(你可以类比为:当我们翻译一个词的时候,不仅会只关注当前的词,也会关注这个词的上下文的其他词的信息)。本文后面将会详细介绍 Self Attention 的内部结构。

接下来,Self Attention 层的输出会经过前馈神经网络。

同理,解码器也具有这两层,但是这两层中间还插入了一个 Encoder-Decoder Attention 层,这个层能帮助解码器聚焦于输入句子的相关部分(类似于 seq2seq 模型 中的 Attention)。

decoder
在这里插入图片描述

图:decoder 以上便是在机器翻译任务里,宏观上的transformer啦。

从细节来理解 Transformer
上面,我们从宏观理解了 Transformer 的主要部分。下面,我们来看输入的张量数据,在 Transformer 中运算最终得到输出的过程。

Transformer 的输入
和通常的 NLP 任务一样,我们首先会使用词嵌入算法(embedding algorithm),将每个词转换为一个词向量。实际中向量一般是 256 或者 512 维。为了简化起见,这里将每个词的转换为一个 4 维的词向量。

那么整个输入的句子是一个向量列表,其中有 3 个词向量。在实际中,每个句子的长度不一样,我们会取一个适当的值,作为向量列表的长度。如果一个句子达不到这个长度,那么就填充全为 0 的词向量;如果句子超出这个长度,则做截断。句子长度是一个超参数,通常是训练集中的句子的最大长度,你可以尝试不同长度的效果。
 个词向量 图:个词向量

Encoder(编码器)
编码器(Encoder)接收的输入都是一个向量列表,输出也是大小同样的向量列表,然后接着输入下一个编码器。

第一 个/层 编码器的输入是词向量,而后面的编码器的输入是上一个编码器的输出。

下面,我们来看这个向量列表在编码器里面是如何流动的。

在这里插入图片描述

每个单词转换成一个向量之后,进入self-attention层,每个位置的单词得到新向量,然后再输入FFN神经网络。

Self-Attention 整体理解
分析 Self-Attention 的具体机制。

假设我们想要翻译的句子是:

The animal didn’t cross the street because it was too tired
这个句子中的 it 是一个指代词,那么 it 指的是什么呢?它是指 animal 还是street?这个问题对人来说,是很简单的,但是对算法来说并不是那么容易。

当模型在处理(翻译)it 的时候,Self Attention机制能够让模型把it和animal关联起来。

同理,当模型处理句子中的每个词时,Self Attention机制使得模型不仅能够关注这个位置的词,而且能够关注句子中其他位置的词,作为辅助线索,进而可以更好地编码当前位置的词。

如果你熟悉 RNN,回忆一下:RNN 在处理一个词时,会考虑前面传过来的hidden state,而hidden state就包含了前面的词的信息。而 Transformer 使用Self Attention机制,会把其他单词的理解融入处理当前的单词。
在这里插入图片描述
一个词和其他词的attention 图:一个词和其他词的attention

如上图可视化图所示,当我们在第五层编码器中(编码部分中的最后一层编码器)编码“it”时,有一部分注意力集中在“The animal”上,并且把这两个词的信息融合到了"it"这个单词中。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-19 12:04:06  更:2021-08-19 12:05:42 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 19:36:27-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码