目录
一、神经网络概览
二、多个例子中的向量化
三、激活函数
?四、神经网络的梯度下降法
?五、直观理解反向传播(+矩阵求导)
?六、随机初始化
?作业:
一、神经网络概览
? 双层神经网络一般包含输入层、隐藏层、输出层,但是输入层一般用第0层表示
?
?
二、多个例子中的向量化
?
??
?
?
三、激活函数
?
?
?四、神经网络的梯度下降法
?
这个是我总结的一篇笔记:?? 一张图看懂神经网络的符号参数(+向量化的注意事项)
?
??
?
?五、直观理解反向传播(+矩阵求导)
?矩阵求导简介
?
?
?
?
?
?
?
?
?
??
?为什么这里dZ没有1/m但是dW有1/m,我个人认为是计算dW的时候是拿损失函数loss计算的,这里的loss函数是包含所有样本的,但是通过dZ计算dW的时候,由于W中的元素是对每一个样本进行相乘计算的,所以需要1/m,也就是相当于前面课程中讲的,代价函数J求dw一样的道理
?
?
?
?六、随机初始化
?
?
?
?
?
?
?作业:
?
?
?
?
?编程:
数据集
?
?
#! /usr/bin/env python
# -*- coding: utf-8 -*-
"""
============================================
时间:2021.8.18
作者:手可摘星辰不去高声语
文件名:神经网络.py
功能: 构建具有单隐藏层的2类分类神经网络。
使用具有非线性激活功能激活函数,例如tanh。
计算交叉熵损失(损失函数)。
实现向前和向后传播。
1、Ctrl + Enter 在下方新建行但不移动光标;
2、Shift + Enter 在下方新建行并移到新行行首;
3、Shift + Enter 任意位置换行
4、Ctrl + D 向下复制当前行
5、Ctrl + Y 删除当前行
6、Ctrl + Shift + V 打开剪切板
7、Ctrl + / 注释(取消注释)选择的行;
8、Ctrl + E 可打开最近访问过的文件
9、Double Shift + / 万能搜索
============================================
"""
import numpy as np
import matplotlib.pyplot as plt
from reportlab.lib.pagesizes import A1
from 第3周.编程题.testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from 第3周.编程题.planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
np.random.seed(1) # 设置一个固定的随机种子,以保证接下来的步骤中我们的结果是一致的。
# 1. 加载查看数据集
X, Y = load_planar_dataset()
plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral) # 绘制散点图
# plt.show()
shape_X = X.shape
shape_Y = Y.shape
m = Y.shape[1] # 训练集里面的数量
print("X的维度为: " + str(shape_X))
print("Y的维度为: " + str(shape_Y))
print("数据集里面的数据有:" + str(m) + " 个\n--------------------------------")
# 2.定义神经网路
# 输入层的数量为X.shape[0](这里是2), 隐藏层的数量设置为4, 输出层的数量Y.shape[0](这里是1)
n_x = X.shape[0]
n_h = 4
n_y = Y.shape[0]
learning_rate = 0.5
# 前向传播函数
def forward_propagation(X, W1, b1, W2, b2):
# 前向传播计算A2
Z1 = np.dot(W1, X) + b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = sigmoid(Z2)
# 使用断言确保我的数据格式是正确的
assert (A2.shape == (1, X.shape[1]))
return A1, A2
# 损失函数
def compute_cost(A2, Y, W1, b1, W2, b2):
# 计算成本
logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))
cost = - np.sum(logprobs) / m
cost = float(np.squeeze(cost))
assert (isinstance(cost, float))
return cost
# 反向传播函数
def backward_propagation(X, Y, W1, b1, W2, b2, A1, A2):
dZ2 = A2 - Y
dW2 = (1 / m) * np.dot(dZ2, A1.T)
db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
dW1 = (1 / m) * np.dot(dZ1, X.T)
db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
grads = (dW2, db2, dW1, db1)
return grads
# 3.初始化模型的参数
W1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.zeros(shape=(n_h, 1))
W2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros(shape=(n_y, 1))
parameters = W1, b1, W2, b2
# 使用断言确保我的数据格式是正确的
assert (W1.shape == (n_h, n_x))
assert (b1.shape == (n_h, 1))
assert (W2.shape == (n_y, n_h))
assert (b2.shape == (n_y, 1))
# 4.循环
if __name__ == '__main__':
running_loss = 0.0
for i in range(10000):
A1, A2 = forward_propagation(X, W1, b1, W2, b2)
cost = compute_cost(A2, Y, W1, b1, W2, b2)
dW2, db2, dW1, db1 = backward_propagation(X, Y, W1, b1, W2, b2, A1, A2)
# 更新参数
W1 = W1 - learning_rate * dW1
b1 = b1 - learning_rate * db1
W2 = W2 - learning_rate * dW2
b2 = b2 - learning_rate * db2
running_loss += cost
if i % 1000 == 999:
print("第 ", i+1, " 次循环,成本为:" + str(cost))
running_loss = 0.0
?
?
#! /usr/bin/env python
# -*- coding: utf-8 -*-
"""
============================================
时间:2021.8.18
作者:手可摘星辰不去高声语
文件名:testCases.py
功能:(前提文件)
1、Ctrl + Enter 在下方新建行但不移动光标;
2、Shift + Enter 在下方新建行并移到新行行首;
3、Shift + Enter 任意位置换行
4、Ctrl + D 向下复制当前行
5、Ctrl + Y 删除当前行
6、Ctrl + Shift + V 打开剪切板
7、Ctrl + / 注释(取消注释)选择的行;
8、Ctrl + E 可打开最近访问过的文件
9、Double Shift + / 万能搜索
============================================
"""
import numpy as np
def layer_sizes_test_case():
np.random.seed(1)
X_assess = np.random.randn(5, 3)
Y_assess = np.random.randn(2, 3)
return X_assess, Y_assess
def initialize_parameters_test_case():
n_x, n_h, n_y = 2, 4, 1
return n_x, n_h, n_y
def forward_propagation_test_case():
np.random.seed(1)
X_assess = np.random.randn(2, 3)
parameters = {'W1': np.array([[-0.00416758, -0.00056267],
[-0.02136196, 0.01640271],
[-0.01793436, -0.00841747],
[ 0.00502881, -0.01245288]]),
'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
'b1': np.array([[ 0.],
[ 0.],
[ 0.],
[ 0.]]),
'b2': np.array([[ 0.]])}
return X_assess, parameters
def compute_cost_test_case():
np.random.seed(1)
Y_assess = np.random.randn(1, 3)
parameters = {'W1': np.array([[-0.00416758, -0.00056267],
[-0.02136196, 0.01640271],
[-0.01793436, -0.00841747],
[ 0.00502881, -0.01245288]]),
'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
'b1': np.array([[ 0.],
[ 0.],
[ 0.],
[ 0.]]),
'b2': np.array([[ 0.]])}
a2 = (np.array([[ 0.5002307 , 0.49985831, 0.50023963]]))
return a2, Y_assess, parameters
def backward_propagation_test_case():
np.random.seed(1)
X_assess = np.random.randn(2, 3)
Y_assess = np.random.randn(1, 3)
parameters = {'W1': np.array([[-0.00416758, -0.00056267],
[-0.02136196, 0.01640271],
[-0.01793436, -0.00841747],
[ 0.00502881, -0.01245288]]),
'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
'b1': np.array([[ 0.],
[ 0.],
[ 0.],
[ 0.]]),
'b2': np.array([[ 0.]])}
cache = {'A1': np.array([[-0.00616578, 0.0020626 , 0.00349619],
[-0.05225116, 0.02725659, -0.02646251],
[-0.02009721, 0.0036869 , 0.02883756],
[ 0.02152675, -0.01385234, 0.02599885]]),
'A2': np.array([[ 0.5002307 , 0.49985831, 0.50023963]]),
'Z1': np.array([[-0.00616586, 0.0020626 , 0.0034962 ],
[-0.05229879, 0.02726335, -0.02646869],
[-0.02009991, 0.00368692, 0.02884556],
[ 0.02153007, -0.01385322, 0.02600471]]),
'Z2': np.array([[ 0.00092281, -0.00056678, 0.00095853]])}
return parameters, cache, X_assess, Y_assess
def update_parameters_test_case():
parameters = {'W1': np.array([[-0.00615039, 0.0169021 ],
[-0.02311792, 0.03137121],
[-0.0169217 , -0.01752545],
[ 0.00935436, -0.05018221]]),
'W2': np.array([[-0.0104319 , -0.04019007, 0.01607211, 0.04440255]]),
'b1': np.array([[ -8.97523455e-07],
[ 8.15562092e-06],
[ 6.04810633e-07],
[ -2.54560700e-06]]),
'b2': np.array([[ 9.14954378e-05]])}
grads = {'dW1': np.array([[ 0.00023322, -0.00205423],
[ 0.00082222, -0.00700776],
[-0.00031831, 0.0028636 ],
[-0.00092857, 0.00809933]]),
'dW2': np.array([[ -1.75740039e-05, 3.70231337e-03, -1.25683095e-03,
-2.55715317e-03]]),
'db1': np.array([[ 1.05570087e-07],
[ -3.81814487e-06],
[ -1.90155145e-07],
[ 5.46467802e-07]]),
'db2': np.array([[ -1.08923140e-05]])}
return parameters, grads
def nn_model_test_case():
np.random.seed(1)
X_assess = np.random.randn(2, 3)
Y_assess = np.random.randn(1, 3)
return X_assess, Y_assess
def predict_test_case():
np.random.seed(1)
X_assess = np.random.randn(2, 3)
parameters = {'W1': np.array([[-0.00615039, 0.0169021 ],
[-0.02311792, 0.03137121],
[-0.0169217 , -0.01752545],
[ 0.00935436, -0.05018221]]),
'W2': np.array([[-0.0104319 , -0.04019007, 0.01607211, 0.04440255]]),
'b1': np.array([[ -8.97523455e-07],
[ 8.15562092e-06],
[ 6.04810633e-07],
[ -2.54560700e-06]]),
'b2': np.array([[ 9.14954378e-05]])}
return parameters, X_assess
?
#! /usr/bin/env python
# -*- coding: utf-8 -*-
"""
============================================
时间:2021.8.18
作者:手可摘星辰不去高声语
文件名:planner_utils.py
功能:(前提文件)
1、Ctrl + Enter 在下方新建行但不移动光标;
2、Shift + Enter 在下方新建行并移到新行行首;
3、Shift + Enter 任意位置换行
4、Ctrl + D 向下复制当前行
5、Ctrl + Y 删除当前行
6、Ctrl + Shift + V 打开剪切板
7、Ctrl + / 注释(取消注释)选择的行;
8、Ctrl + E 可打开最近访问过的文件
9、Double Shift + / 万能搜索
============================================
"""
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
def plot_decision_boundary(model, X, y):
# Set min and max values and give it some padding
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole grid
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
def sigmoid(x):
s = 1/(1+np.exp(-x))
return s
def load_planar_dataset():
np.random.seed(1)
m = 400 # number of examples
N = int(m/2) # number of points per class
D = 2 # dimensionality
X = np.zeros((m,D)) # data matrix where each row is a single example
Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
a = 4 # maximum ray of the flower
for j in range(2):
ix = range(N*j,N*(j+1))
t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j
X = X.T
Y = Y.T
return X, Y
def load_extra_datasets():
N = 200
noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
?
?
|