IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> [Task02] NLP 学习attention和transformer -> 正文阅读

[人工智能][Task02] NLP 学习attention和transformer

组队学习资料:https://github.com/datawhalechina/Learn-NLP-with-Transformers

?

1.1 seq2seq

应用:机器翻译、文本摘要、图像描述生成

论文:

https://papers.nips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf

接收的输入是一个(单词、字母、图像特征)序列,输出是另外一个序列

组成:Encoder & Decoder

过程:input seq -- encoder -- context -- decoder -- output seq (同样适用于机器翻译)

你可以在编写seq2seq模型的时候设置上下文向量的长度。这个长度是基于编码器 RNN 的隐藏层神经元的数量。上图展示了长度为 4 的向量,但在实际应用中,上下文向量的长度可能是 256,512 或者 1024。

如何把每个单词都转化为一个向量呢?我们使用一类称为 "word embedding" 的方法。我们可以使用预训练好的 embeddings,或者在我们的数据集上训练自己的 embedding。通常 embedding 向量大小是 200 或者 300。

回顾RNN模型

RNN 在第 2 个时间步,采用第 1 个时间步的 hidden state(隐藏层状态) 和第 2 个时间步的输入向量,来得到输出。在下文,我们会使用类似这种动画,来描述神经机器翻译模型里的所有向量。

编码器和解码器在每个时间步处理输入,并得到输出。由于编码器和解码器都是 RNN,RNN 会根据当前时间步的输入,和前一个时间步的 hidden state(隐藏层状态),更新当前时间步的 hidden state(隐藏层状态)。

让我们看下编码器的 hidden state(隐藏层状态)。注意,最后一个 hidden state(隐藏层状态)实际上是我们传给解码器的上下文(context)。

1.2 Attention

问题:上下文context向量,长文本挑战

解决论文:

https://arxiv.org/abs/1409.0473

https://arxiv.org/abs/1508.04025

Difference:

编码器会把更多的数据传递给解码器。编码器把所有时间步的 hidden state(隐藏层状态)传递给解码器,而不是只传递最后一个 hidden state(隐藏层状态) ;

注意力模型的解码器在产生输出之前,做了一个额外的处理。为了把注意力集中在与该时间步相关的输入部分。解码器做了如下的处理:

  1. 查看所有接收到的编码器的 hidden state(隐藏层状态)。其中,编码器中每个 hidden state(隐藏层状态)都对应到输入句子中一个单词。
  2. 给每个 hidden state(隐藏层状态)一个分数(我们先忽略这个分数的计算过程)。
  3. 将每个 hidden state(隐藏层状态)乘以经过 softmax 的对应的分数,从而,高分对应的 hidden state(隐藏层状态)会被放大,而低分对应的 hidden state(隐藏层状态)会被缩小

注意力模型的整个过程:

  1. 注意力模型的解码器 RNN 的输入包括:一个embedding 向量,和一个初始化好的解码器 hidden state(隐藏层状态)。
  2. RNN 处理上述的 2 个输入,产生一个输出和一个新的 hidden state(隐藏层状态 h4 向量),其中输出会被忽略。
  3. 注意力的步骤:我们使用编码器的 hidden state(隐藏层状态)和 h4 向量来计算这个时间步的上下文向量(C4)。
  4. 我们把 h4 和 C4 拼接起来,得到一个向量。
  5. 我们把这个向量输入一个前馈神经网络(这个网络是和整个模型一起训练的)。
  6. 前馈神经网络的输出的输出表示这个时间步输出的单词。
  7. 在下一个时间步重复这个步骤。

2.Transformer

2.1 结构解析

2017 年,Google 提出了 Transformer 模型,用 Self Attention 的结构,取代了以往 NLP 任务中的 RNN 网络结构,在 WMT 2014 Englishto-German 和 WMT 2014 English-to-French两个机器翻译任务上都取得了当时 SOTA 的效果。

transformer

Encoder: 6层编码器(层数是超参,可以修改),每层编码器在结构上都是一样的,但不同层编码器的权重参数是不同的。

每层的结构:

  • Self-Attention Layer:这个层处理一个词的时候,不仅会使用这个词本身的信息,也会使用句子中其他词的信息
  • Feed Forward Neural Network(前馈神经网络,缩写为 FFNN)

Decoder:6层解码器

每层的结构中间还插入encoder-decoder attention层

decoder

2.2 输入

输入:词嵌入算法(embedding algorithm),将每个词转换为一个词向量。实际中向量一般是 256 或者 512 维。在实际中,每个句子的长度不一样,我们会取一个适当的值,作为向量列表的长度。如果一个句子达不到这个长度,那么就填充全为 0 的词向量;如果句子超出这个长度,则做截断。句子长度是一个超参数,通常是训练集中的句子的最大长度,你可以尝试不同长度的效果。

一层传一层

?2.3 self-attention

1. 计算Query向量,Key向量,Value向量

对输入编码器的每个词向量,都创建 3 个向量,分别是:Query 向量,Key 向量,Value 向量。这 3 个向量是词向量分别和 3 个矩阵相乘得到的,而这个矩阵是我们要学习的参数。这 3 个新得到的向量一般比原来的词向量的长度更小。

2. 计算Attention Score

单个位置的注意力分数计算,但实际操作上是利用矩阵计算

Think计算

矩阵计算如下:

输出

2.4 multi-head attention?

一组注意力为一个attention head,多头注意力机制可以进一步完善self attention层,主要在如下两个方面:它扩展了模型关注不同位置的能力。多头注意力机制赋予 attention 层多个“子表示空间”。

放在一起

2.5?代码实现

Pytorch提供多头注意力集成的包

torch.nn.MultiheadAttention(embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None)

参数说明如下:

  • embed_dim:最终输出的 K、Q、V 矩阵的维度,这个维度需要和词向量的维度一样

  • num_heads:设置多头注意力的数量。如果设置为 1,那么只使用一组注意力。如果设置为其他数值,那么 - - num_heads 的值需要能够被 embed_dim 整除

  • dropout:这个 dropout 加在 attention score 后面

?定义对象后,调用时传入的参数如下:

forward(query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None)

?解码步骤:

## nn.MultiheadAttention 输入第0维为length
# batch_size 为 64,有 12 个词,每个词的 Query 向量是 300 维
query = torch.rand(12,64,300)
# batch_size 为 64,有 10 个词,每个词的 Key 向量是 300 维
key = torch.rand(10,64,300)
# batch_size 为 64,有 10 个词,每个词的 Value 向量是 300 维
value= torch.rand(10,64,300)

embed_dim = 299
num_heads = 1
# 输出是 (attn_output, attn_output_weights)
multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
attn_output = multihead_attn(query, key, value)[0]
# output: torch.Size([12, 64, 300])
# batch_size 为 64,有 12 个词,每个词的向量是 300 维
print(attn_output.shape)

2.6 位置编码

为了解决这个问题,Transformer 模型对每个输入的向量都添加了一个向量。这些向量遵循模型学习到的特定模式,有助于确定每个单词的位置,或者句子中不同单词之间的距离。这种做法背后的直觉是:将这些表示位置的向量添加到词向量中,得到了新的向量,这些新向量映射到 Q/K/V,然后计算点积得到 attention 时,可以提供有意义的信息。

2.7 残差链接

编码器结构中有一个需要注意的细节是:编码器的每个子层(Self Attention 层和 FFNN)都有一个残差连接和层标准化(layer-normalization)。

残差连接

在解码器的子层里面也有层标准化(layer-normalization)。假设一个 Transformer 是由 2 层编码器和两层解码器组成的,如下图所示。

2层示意图

2.8 Decoder

在完成了编码(encoding)阶段之后,我们开始解码(decoding)阶段。解码(decoding )阶段的每一个时间步都输出一个翻译后的单词(这里的例子是英语翻译)。

接下来会重复这个过程,直到输出一个结束符,Transformer 就完成了所有的输出。每一步的输出都会在下一个时间步输入到下面的第一个解码器。Decoder 就像 Encoder 那样,从下往上一层一层地输出结果。正对如编码器的输入所做的处理,我们把解码器的输入向量,也加上位置编码向量,来指示每个词的位置。

解码器中的 Self Attention 层,和编码器中的 Self Attention 层不太一样:在解码器里,Self Attention 层只允许关注到输出序列中早于当前位置之前的单词。具体做法是:在 Self Attention 分数经过 Softmax 层之前,屏蔽当前位置之后的那些位置。

Encoder-Decoder Attention层的原理和多头注意力(multiheaded Self Attention)机制类似,不同之处是:Encoder-Decoder Attention层是使用前一层的输出来构造 Query 矩阵,而 Key 矩阵和 Value 矩阵来自于解码器最终的输出。

2.9 线性层和Softmax层

Decoder 最终的输出是一个向量,其中每个元素是浮点数。我们怎么把这个向量转换为单词呢?这是由 Softmax 层后面的线性层来完成的。

线性层就是一个普通的全连接神经网络,可以把解码器输出的向量,映射到一个更长的向量,这个向量称为 logits 向量。

现在假设我们的模型有 10000 个英语单词(模型的输出词汇表),这些单词是从训练集中学到的。因此 logits 向量有 10000 个数字,每个数表示一个单词的分数。我们就是这样去理解线性层的输出。

然后,Softmax 层会把这些分数转换为概率(把所有的分数转换为正数,并且加起来等于 1)。然后选择最高概率的那个数字对应的词,就是这个时间步的输出单词。

线性层

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-19 12:04:06  更:2021-08-19 12:06:43 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/12 0:56:50-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码