| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 一文全览机器学习建模流程(Python代码) -> 正文阅读 |
|
[人工智能]一文全览机器学习建模流程(Python代码) |
随着人工智能时代的到来,机器学习已成为解决问题的关键工具。我们接下来会详细介绍机器学习如何应用到实际问题,并概括机器学习应用的一般流程。 1.1 明确问题明确业务问题是机器学习的先决条件,即抽象出该问题为机器学习的预测问题:需要学习什么样的数据作为输入,目标是得到什么样的模型做决策作为输出。 1.2 数据选择机器学习广泛流传一句话:“数据和特征决定了机器学习结果的上限,而模型算法只是尽可能逼近这个上限”,意味着数据及其特征表示的质量决定了模型的最终效果,且在实际的工业应用中,算法通常占了很小的一部分,大部分的工作都是在找数据、提炼数据、分析数据及特征工程。 数据选择是准备机器学习原料的关键,需要关注的是: 2 特征工程特征工程就是对原始数据分析处理转化为模型可用的特征,这些特征可以更好地向预测模型描述潜在规律,从而提高模型对未见数据的准确性。特征工程按技术上可分为如下几步: 2.1 探索性数据分析拿到数据后,可以先做探索性数据分析(EDA)去理解数据本身的内部结构及规律,如果你对数据情况不了解也没有相关的业务背景知识,不做相关的分析及预处理,直接将数据喂给传统模型往往效果不太好。 2.2 数据预处理异常值处理收集的数据由于人为或者自然因素可能引入了异常值(噪音),这会对模型学习进行干扰。 通常需要处理人为引起的异常值,通过业务或技术手段(如3σ准则)判定异常值,再由(正则式匹配)等方式筛选异常的信息,并结合业务情况删除或者替换数值。 缺失值处理数据缺失值可以通过结合业务进行填充数值、不做处理或者删除。根据特征缺失率情况及处理方式分为以下情况: 数据离散化离散化是将连续的数据进行分段,使其变为一段段离散化的区间,分段的原则有等宽、等频等方法。通过离散化一般可以增加抗噪能力、使特征更有业务解释性、减小算法的时间及空间开销(不同算法情况不一)。 数据标准化数据各个特征变量的量纲差异很大,可以使用数据标准化消除不同分量量纲差异的影响,加速模型收敛的效率。常用的方法有: ② z-score 标准化: 2.3 特征提取特征表示数据需要转换为计算机能够处理的数值形式,图片类的数据需要转换为RGB三维矩阵的表示。 字符类的数据可以用多维数组表示,有Onehot独热编码表示(用单独一个位置的1来表示)、word2vetor分布式表示等; 特征衍生基础特征对样本信息的表达有限,可通过特征衍生可以增加特征的非线性表达能力,提升模型效果。另外,在业务上的理解设计特征,还可以增加模型的可解释性。(如体重除以身高就是表达健康情况的重要特征。) ② 使用自动化特征衍生工具:如Featuretools等,可以使用聚合(agg_primitives)、转换(trans_primitives)或则自定义方式暴力生成特征; 特征选择特征选择的目标是寻找最优特征子集,通过筛选出显著特征、摒弃冗余特征,减少模型的过拟合风险并提高运行效率。特征选择方法一般分为三类: 特征降维如果特征选择后的特征数目仍太多,这种情形下常会有数据样本稀疏、距离计算困难的问题(称为 “维数灾难”),可以通过特征降维解决。常用的降维方法有:主成分分析法(PCA)等。 3 模型训练模型训练是利用既定的模型方法去学习数据经验的过程,这过程还需要结合模型评估以调整算法的超参数,最终选择表现较优的模型。 3.1 数据集划分训练模型前,常用的HoldOut验证法(此外还有留一法、k折交叉验证等方法),把数据集分为训练集和测试集,并可再对训练集进一步细分为训练集和验证集,以方便评估模型的性能。 3.3 训练过程模型的训练过程即学习数据经验得到较优模型及对应参数(如神经网络最终学习到较优的权重值)。整个训练过程还需要通过调节超参数(如神经网络层数、梯度下降的学习率)进行控制优化的。 4 模型评估机器学习的直接目的是学(拟合)到“好”的模型,不仅仅是学习过程中对训练数据的良好的学习预测能力,根本上在于要对新数据能有很好的预测能力(泛化能力),所以客观地评估模型性能至关重要。技术上常根据训练集及测试集的指标表现,评估模型的性能。 4.1 评估指标评估分类模型常用的评估标准有查准率P、查全率R及两者调和平均F1-score 等,并由混淆矩阵的统计相应的个数计算出数值: 查准率是指分类器分类正确的正样本(TP)的个数占该分类器所有预测为正样本个数(TP+FP)的比例; 评估回归模型常用的评估指标有MSE均方误差等。反馈的是预测数值与实际值的拟合情况。 评估聚类模型可分为两类方式,一类将聚类结果与某个“参考模型”的结果进行比较,称为“外部指标”(external index):如兰德指数,FM指数等。另一类是直接考察聚类结果而不利用任何参考模型,称为“内部指标”(internal index):如紧凑度、分离度等。 4.2 模型评估及优化训练机器学习模型所使用的数据样本集称之为训练集(training set), 在训练数据的误差称之为训练误差(training error),在测试数据上的误差,称之为测试误差(test error)或泛化误差 (generalization error)。 描述模型拟合(学习)程度常用欠拟合、拟合良好、过拟合,我们可以通过训练误差及测试误差评估模型的拟合程度。从整体训练过程来看,欠拟合时训练误差和测试误差均较高,随着训练时间及模型复杂度的增加而下降。在到达一个拟合最优的临界点之后,训练误差下降,测试误差上升,这个时候就进入了过拟合区域。 欠拟合是指相较于数据而言模型结构过于简单,以至于无法学习到数据中的规律。 5 模型决策决策应用是机器学习最终目的,对模型预测信息加以分析解释,并应用于实际的工作领域。需要注意的是,工程上是结果导向,模型在线上运行的效果直接决定模型的成败,不仅仅包括其准确程度、误差等情况,还包括其运行的速度(时间复杂度)、资源消耗程度(空间复杂度)、稳定性的综合考虑。 6 机器学习项目实战(数据挖掘)6.1 项目介绍项目的实验数据来源著名的UCI机器学习数据库,该数据库有大量的人工智能数据挖掘数据。本例选用的是sklearn上的数据集版本:Breast Cancer Wisconsin DataSet(威斯康星州乳腺癌数据集),这些数据来源美国威斯康星大学医院的临床病例报告,每条样本有30个特征属性,标签为是否良性肿瘤,即有监督分类预测的问题。 项目的建模思路是通过分析乳腺癌数据集数据,特征工程,构建逻辑回归模型学习数据,预测样本的类别是否为良性肿瘤。 6.2 代码实现导入相关的Python库,加载cancer数据集,查看数据介绍, 并转为DataFrame格式。
探索性数据分析EDA:使用pandas_profiling库分析数据数值情况,缺失率及相关性等。
特征工程方面主要的分析及处理有:
模型训练:使用keras搭建逻辑回归模型,训练模型,观察模型训练集及验证集的loss损失
以测试集F1-score等指标的表现,评估模型的泛化能力。最终测试集的f1-score有88%,有较好的模型表现。
文章首发于算法进阶,公众号阅读原文可访问GitHub项目源码 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/11 23:41:09- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |